Question
Question: If the value of the definite integral $\int_{-1}^{1} \cot^{-1}(\frac{1}{\sqrt{1-x^2}})\cdot(\cot^{-1...
If the value of the definite integral ∫−11cot−1(1−x21)⋅(cot−11−(x2)∣x∣x)dx=cπ2(a−b), where a,b,c∈N in their lowest form, then find the value of (a+b+c).

7
Solution
Let the integral be I. The integrand is f(x)=cot−1(1−x21)⋅(cot−11−(x2)∣x∣x).
For x∈(−1,1), 1−x2>0. So, cot−1(1−x21)=tan−1(1−x2). Let A(x)=tan−1(1−x2). A(x) is an even function.
Let B(x)=cot−11−(x2)∣x∣x. We check the parity of f(x): f(−x)=cot−1(1−(−x)21)⋅(cot−11−((−x)2)∣−x∣−x). Since (−x)2=x2 and ∣−x∣=∣x∣, we have: f(−x)=cot−1(1−x21)⋅(cot−11−(x2)∣x∣−x). f(−x)=A(x)⋅cot−1(−1−(x2)∣x∣x). Using cot−1(−y)=π−cot−1(y) for y>0: f(−x)=A(x)(π−cot−11−(x2)∣x∣x). f(−x)=πA(x)−A(x)B(x)=πA(x)−f(x). So, f(x)+f(−x)=πA(x).
Using the property ∫−aaf(x)dx=∫0a(f(x)+f(−x))dx: I=∫−11f(x)dx=∫01(f(x)+f(−x))dx=∫01πA(x)dx. I=π∫01tan−1(1−x2)dx.
Let J=∫01tan−1(1−x2)dx. Substitute x=cosθ, dx=−sinθdθ. When x=0, θ=π/2. When x=1, θ=0. J=∫π/20tan−1(sinθ)(−sinθ)dθ=∫0π/2tan−1(sinθ)sinθdθ. Using integration by parts: u=tan−1(sinθ), dv=sinθdθ. du=1+sin2θcosθdθ, v=−cosθ. J=[−cosθtan−1(sinθ)]0π/2−∫0π/2(−cosθ)1+sin2θcosθdθ. The boundary term is 0. J=∫0π/21+sin2θcos2θdθ=∫0π/21+sin2θ1−sin2θdθ. J=∫0π/21+sin2θ2−(1+sin2θ)dθ=∫0π/2(1+sin2θ2−1)dθ. J=2∫0π/21+sin2θ1dθ−2π. The integral ∫0π/21+sin2θ1dθ=∫0π/2sec2θ+tan2θsec2θdθ=∫0π/21+2tan2θsec2θdθ. Let t=tanθ, dt=sec2θdθ. ∫0∞1+2t2dt=21[tan−1(2t)]0∞=21(2π−0)=22π. So, J=2⋅22π−2π=2π−2π=2π(2−1).
Therefore, I=πJ=π⋅2π(2−1)=2π2(2−1). Comparing with cπ2(a−b), we have: 4π2(2−1)=cπ2(a−b). Thus, a=2, b=1, c=4. a+b+c=2+1+4=7.
