Solveeit Logo

Question

Question: If the value of the definite integral $\int_{-1}^{1} \cot^{-1}(\frac{1}{\sqrt{1-x^2}})\cdot(\cot^{-1...

If the value of the definite integral 11cot1(11x2)(cot1x1(x2)x)dx=π2(ab)c\int_{-1}^{1} \cot^{-1}(\frac{1}{\sqrt{1-x^2}})\cdot(\cot^{-1}\frac{x}{\sqrt{1-(x^2)^{|x|}}})dx = \frac{\pi^2 (\sqrt{a} - \sqrt{b})}{\sqrt{c}}, where a,b,cNa, b, c \in N in their lowest form, then find the value of (a+b+c)(a + b + c).

Answer

7

Explanation

Solution

Let the integral be II. The integrand is f(x)=cot1(11x2)(cot1x1(x2)x)f(x) = \cot^{-1}(\frac{1}{\sqrt{1-x^2}})\cdot(\cot^{-1}\frac{x}{\sqrt{1-(x^2)^{|x|}}}).

For x(1,1)x \in (-1, 1), 1x2>0\sqrt{1-x^2} > 0. So, cot1(11x2)=tan1(1x2)\cot^{-1}(\frac{1}{\sqrt{1-x^2}}) = \tan^{-1}(\sqrt{1-x^2}). Let A(x)=tan1(1x2)A(x) = \tan^{-1}(\sqrt{1-x^2}). A(x)A(x) is an even function.

Let B(x)=cot1x1(x2)xB(x) = \cot^{-1}\frac{x}{\sqrt{1-(x^2)^{|x|}}}. We check the parity of f(x)f(x): f(x)=cot1(11(x)2)(cot1x1((x)2)x)f(-x) = \cot^{-1}(\frac{1}{\sqrt{1-(-x)^2}})\cdot(\cot^{-1}\frac{-x}{\sqrt{1-((-x)^2)^{|-x|}}}). Since (x)2=x2(-x)^2 = x^2 and x=x|-x| = |x|, we have: f(x)=cot1(11x2)(cot1x1(x2)x)f(-x) = \cot^{-1}(\frac{1}{\sqrt{1-x^2}})\cdot(\cot^{-1}\frac{-x}{\sqrt{1-(x^2)^{|x|}}}). f(x)=A(x)cot1(x1(x2)x)f(-x) = A(x) \cdot \cot^{-1}(- \frac{x}{\sqrt{1-(x^2)^{|x|}}}). Using cot1(y)=πcot1(y)\cot^{-1}(-y) = \pi - \cot^{-1}(y) for y>0y>0: f(x)=A(x)(πcot1x1(x2)x)f(-x) = A(x) (\pi - \cot^{-1}\frac{x}{\sqrt{1-(x^2)^{|x|}}}). f(x)=πA(x)A(x)B(x)=πA(x)f(x)f(-x) = \pi A(x) - A(x) B(x) = \pi A(x) - f(x). So, f(x)+f(x)=πA(x)f(x) + f(-x) = \pi A(x).

Using the property aaf(x)dx=0a(f(x)+f(x))dx\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx: I=11f(x)dx=01(f(x)+f(x))dx=01πA(x)dxI = \int_{-1}^{1} f(x) dx = \int_{0}^{1} (f(x) + f(-x)) dx = \int_{0}^{1} \pi A(x) dx. I=π01tan1(1x2)dxI = \pi \int_{0}^{1} \tan^{-1}(\sqrt{1-x^2}) dx.

Let J=01tan1(1x2)dxJ = \int_{0}^{1} \tan^{-1}(\sqrt{1-x^2}) dx. Substitute x=cosθx = \cos \theta, dx=sinθdθdx = -\sin \theta d\theta. When x=0x=0, θ=π/2\theta = \pi/2. When x=1x=1, θ=0\theta = 0. J=π/20tan1(sinθ)(sinθ)dθ=0π/2tan1(sinθ)sinθdθJ = \int_{\pi/2}^{0} \tan^{-1}(\sin \theta) (-\sin \theta) d\theta = \int_{0}^{\pi/2} \tan^{-1}(\sin \theta) \sin \theta d\theta. Using integration by parts: u=tan1(sinθ)u = \tan^{-1}(\sin \theta), dv=sinθdθdv = \sin \theta d\theta. du=cosθ1+sin2θdθdu = \frac{\cos \theta}{1+\sin^2 \theta} d\theta, v=cosθv = -\cos \theta. J=[cosθtan1(sinθ)]0π/20π/2(cosθ)cosθ1+sin2θdθJ = [-\cos \theta \tan^{-1}(\sin \theta)]_{0}^{\pi/2} - \int_{0}^{\pi/2} (-\cos \theta) \frac{\cos \theta}{1+\sin^2 \theta} d\theta. The boundary term is 0. J=0π/2cos2θ1+sin2θdθ=0π/21sin2θ1+sin2θdθJ = \int_{0}^{\pi/2} \frac{\cos^2 \theta}{1+\sin^2 \theta} d\theta = \int_{0}^{\pi/2} \frac{1-\sin^2 \theta}{1+\sin^2 \theta} d\theta. J=0π/22(1+sin2θ)1+sin2θdθ=0π/2(21+sin2θ1)dθJ = \int_{0}^{\pi/2} \frac{2 - (1+\sin^2 \theta)}{1+\sin^2 \theta} d\theta = \int_{0}^{\pi/2} (\frac{2}{1+\sin^2 \theta} - 1) d\theta. J=20π/211+sin2θdθπ2J = 2 \int_{0}^{\pi/2} \frac{1}{1+\sin^2 \theta} d\theta - \frac{\pi}{2}. The integral 0π/211+sin2θdθ=0π/2sec2θsec2θ+tan2θdθ=0π/2sec2θ1+2tan2θdθ\int_{0}^{\pi/2} \frac{1}{1+\sin^2 \theta} d\theta = \int_{0}^{\pi/2} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta} d\theta = \int_{0}^{\pi/2} \frac{\sec^2 \theta}{1+2\tan^2 \theta} d\theta. Let t=tanθt = \tan \theta, dt=sec2θdθdt = \sec^2 \theta d\theta. 0dt1+2t2=12[tan1(2t)]0=12(π20)=π22\int_{0}^{\infty} \frac{dt}{1+2t^2} = \frac{1}{\sqrt{2}} [\tan^{-1}(\sqrt{2}t)]_{0}^{\infty} = \frac{1}{\sqrt{2}} (\frac{\pi}{2} - 0) = \frac{\pi}{2\sqrt{2}}. So, J=2π22π2=π2π2=π(21)2J = 2 \cdot \frac{\pi}{2\sqrt{2}} - \frac{\pi}{2} = \frac{\pi}{\sqrt{2}} - \frac{\pi}{2} = \frac{\pi(\sqrt{2}-1)}{2}.

Therefore, I=πJ=ππ(21)2=π2(21)2I = \pi J = \pi \cdot \frac{\pi(\sqrt{2}-1)}{2} = \frac{\pi^2(\sqrt{2}-1)}{2}. Comparing with π2(ab)c\frac{\pi^2 (\sqrt{a} - \sqrt{b})}{\sqrt{c}}, we have: π2(21)4=π2(ab)c\frac{\pi^2(\sqrt{2}-\sqrt{1})}{\sqrt{4}} = \frac{\pi^2 (\sqrt{a} - \sqrt{b})}{\sqrt{c}}. Thus, a=2a=2, b=1b=1, c=4c=4. a+b+c=2+1+4=7a+b+c = 2+1+4 = 7.