Solveeit Logo

Question

Question: If $\tan \frac{\pi}{24}$ is a root of $x^4 + ax^3 + bx^2 - ax + 1 = 0$ then the value of a + b is (a...

If tanπ24\tan \frac{\pi}{24} is a root of x4+ax3+bx2ax+1=0x^4 + ax^3 + bx^2 - ax + 1 = 0 then the value of a + b is (a, b ∈ N)

Answer

10

Explanation

Solution

The given polynomial equation is x4+ax3+bx2ax+1=0x^4 + ax^3 + bx^2 - ax + 1 = 0.

Since x=0x=0 is not a root (as 101 \neq 0), we can divide the equation by x2x^2:

x2+ax+bax+1x2=0x^2 + ax + b - \frac{a}{x} + \frac{1}{x^2} = 0

Rearrange the terms:

(x2+1x2)+a(x1x)+b=0\left(x^2 + \frac{1}{x^2}\right) + a\left(x - \frac{1}{x}\right) + b = 0

Let y=x1xy = x - \frac{1}{x}.

Then, y2=(x1x)2=x22+1x2y^2 = \left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2}.

So, x2+1x2=y2+2x^2 + \frac{1}{x^2} = y^2 + 2.

Substitute these into the equation:

(y2+2)+ay+b=0(y^2 + 2) + ay + b = 0

y2+ay+(b+2)=0y^2 + ay + (b+2) = 0

We are given that tanπ24\tan \frac{\pi}{24} is a root of the original equation. Let x=tanπ24x = \tan \frac{\pi}{24}.

Then, y=tanπ241tanπ24=tanπ24cotπ24y = \tan \frac{\pi}{24} - \frac{1}{\tan \frac{\pi}{24}} = \tan \frac{\pi}{24} - \cot \frac{\pi}{24}.

Using the trigonometric identity tanθcotθ=2cot(2θ)\tan \theta - \cot \theta = -2 \cot(2\theta):

y=2cot(2π24)=2cot(π12)y = -2 \cot\left(2 \cdot \frac{\pi}{24}\right) = -2 \cot\left(\frac{\pi}{12}\right).

Now, we need to find the value of cot(π12)\cot\left(\frac{\pi}{12}\right).

π12\frac{\pi}{12} radians is equal to 1515^\circ.

We know that tan15=tan(4530)=tan45tan301+tan45tan30\tan 15^\circ = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ}.

tan15=1131+113=3133+13=313+1\tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}.

To rationalize the denominator, multiply the numerator and denominator by (31)(\sqrt{3}-1):

tan15=(31)(31)(3+1)(31)=(31)231=323+12=4232=23\tan 15^\circ = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{(\sqrt{3}-1)^2}{3-1} = \frac{3 - 2\sqrt{3} + 1}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.

Then, cot15=1tan15=123\cot 15^\circ = \frac{1}{\tan 15^\circ} = \frac{1}{2 - \sqrt{3}}.

To rationalize, multiply numerator and denominator by (2+3)(2+\sqrt{3}):

cot15=1232+32+3=2+343=2+3\cot 15^\circ = \frac{1}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3}.

Substitute this value back into the expression for yy:

y=2(2+3)=423y = -2(2 + \sqrt{3}) = -4 - 2\sqrt{3}.

This value of yy is a root of the quadratic equation y2+ay+(b+2)=0y^2 + ay + (b+2) = 0.

Since aa and bb are natural numbers (and thus rational), the coefficients of this quadratic equation are rational. If one root of a quadratic equation with rational coefficients is p+qrp+q\sqrt{r}, then its conjugate pqrp-q\sqrt{r} must also be a root.

So, if y1=423y_1 = -4 - 2\sqrt{3} is a root, then the other root must be y2=4+23y_2 = -4 + 2\sqrt{3}.

Using Vieta's formulas for the sum and product of roots of y2+ay+(b+2)=0y^2 + ay + (b+2) = 0:

Sum of roots: y1+y2=ay_1 + y_2 = -a

(423)+(4+23)=a(-4 - 2\sqrt{3}) + (-4 + 2\sqrt{3}) = -a

8=a    a=8-8 = -a \implies a = 8.

Product of roots: y1y2=b+2y_1 y_2 = b+2

(423)(4+23)=b+2(-4 - 2\sqrt{3})(-4 + 2\sqrt{3}) = b+2

This is of the form (AB)(A+B)=A2B2(A-B)(A+B) = A^2 - B^2, where A=4A=-4 and B=23B=2\sqrt{3}.

(4)2(23)2=b+2(-4)^2 - (2\sqrt{3})^2 = b+2

16(43)=b+216 - (4 \cdot 3) = b+2

1612=b+216 - 12 = b+2

4=b+2    b=24 = b+2 \implies b = 2.

We are given that a,bNa, b \in N (natural numbers).

Our calculated values are a=8a=8 and b=2b=2, which are indeed natural numbers.

Finally, we need to find the value of a+ba+b:

a+b=8+2=10a+b = 8 + 2 = 10.