Solveeit Logo

Question

Question: If $\int_{0}^{\infty} [\frac{3}{e^x}] dx = k$ then $e^k$ is equal to...

If 0[3ex]dx=k\int_{0}^{\infty} [\frac{3}{e^x}] dx = k then eke^k is equal to

A

2

B

3

C

8/2

D

6

Answer

9/2

Explanation

Solution

The problem asks for the value of eke^k, where k=0[3ex]dxk = \int_{0}^{\infty} [\frac{3}{e^x}] dx. The notation [y][y] denotes the greatest integer less than or equal to yy.

Let g(x)=3exg(x) = \frac{3}{e^x}. As xx goes from 00 to \infty, g(x)g(x) decreases from 33 to 00. We need to find the intervals where [3ex][\frac{3}{e^x}] takes constant integer values. \begin{enumerate} \item For [3ex]=2[\frac{3}{e^x}] = 2: This occurs when 23ex<32 \le \frac{3}{e^x} < 3. 3ex<3    ex>1    x>0\frac{3}{e^x} < 3 \implies e^x > 1 \implies x > 0. 23ex    ex32    xln(32)2 \le \frac{3}{e^x} \implies e^x \le \frac{3}{2} \implies x \le \ln(\frac{3}{2}). So, for 0<xln(32)0 < x \le \ln(\frac{3}{2}), [3ex]=2[\frac{3}{e^x}] = 2.

\item For $[\frac{3}{e^x}] = 1$: This occurs when $1 \le \frac{3}{e^x} < 2$.
$\frac{3}{e^x} < 2 \implies e^x > \frac{3}{2} \implies x > \ln(\frac{3}{2})$.
$1 \le \frac{3}{e^x} \implies e^x \le 3 \implies x \le \ln(3)$.
So, for $\ln(\frac{3}{2}) < x \le \ln(3)$, $[\frac{3}{e^x}] = 1$.

\item For $[\frac{3}{e^x}] = 0$: This occurs when $0 \le \frac{3}{e^x} < 1$.
$\frac{3}{e^x} < 1 \implies e^x > 3 \implies x > \ln(3)$.
So, for $x > \ln(3)$, $[\frac{3}{e^x}] = 0$.

\end{enumerate} Now, we split the integral: k=0[3ex]dx=0ln(3/2)2dx+ln(3/2)ln(3)1dx+ln(3)0dxk = \int_{0}^{\infty} [\frac{3}{e^x}] dx = \int_{0}^{\ln(3/2)} 2 dx + \int_{\ln(3/2)}^{\ln(3)} 1 dx + \int_{\ln(3)}^{\infty} 0 dx

Evaluate each integral: 0ln(3/2)2dx=2[x]0ln(3/2)=2(ln(32)0)=2ln(32)\int_{0}^{\ln(3/2)} 2 dx = 2[x]_{0}^{\ln(3/2)} = 2(\ln(\frac{3}{2}) - 0) = 2\ln(\frac{3}{2}) ln(3/2)ln(3)1dx=[x]ln(3/2)ln(3)=ln(3)ln(32)=ln(33/2)=ln(2)\int_{\ln(3/2)}^{\ln(3)} 1 dx = [x]_{\ln(3/2)}^{\ln(3)} = \ln(3) - \ln(\frac{3}{2}) = \ln(\frac{3}{3/2}) = \ln(2) ln(3)0dx=0\int_{\ln(3)}^{\infty} 0 dx = 0

Summing these gives kk: k=2ln(32)+ln(2)=ln((32)2)+ln(2)=ln(94)+ln(2)=ln(94×2)=ln(92)k = 2\ln(\frac{3}{2}) + \ln(2) = \ln((\frac{3}{2})^2) + \ln(2) = \ln(\frac{9}{4}) + \ln(2) = \ln(\frac{9}{4} \times 2) = \ln(\frac{9}{2})

The question asks for eke^k: ek=eln(9/2)=92e^k = e^{\ln(9/2)} = \frac{9}{2}.

Note: The calculated value 92\frac{9}{2} is not present in the given options. Option (C) is 82=4\frac{8}{2} = 4. This suggests a potential typo in the question or options.