Question
Question: If $\int_{0}^{\infty} [\frac{3}{e^x}] dx = k$ then $e^k$ is equal to...
If ∫0∞[ex3]dx=k then ek is equal to

2
3
8/2
6
9/2
Solution
The problem asks for the value of ek, where k=∫0∞[ex3]dx. The notation [y] denotes the greatest integer less than or equal to y.
Let g(x)=ex3. As x goes from 0 to ∞, g(x) decreases from 3 to 0. We need to find the intervals where [ex3] takes constant integer values. \begin{enumerate} \item For [ex3]=2: This occurs when 2≤ex3<3. ex3<3⟹ex>1⟹x>0. 2≤ex3⟹ex≤23⟹x≤ln(23). So, for 0<x≤ln(23), [ex3]=2.
\item For $[\frac{3}{e^x}] = 1$: This occurs when $1 \le \frac{3}{e^x} < 2$.
$\frac{3}{e^x} < 2 \implies e^x > \frac{3}{2} \implies x > \ln(\frac{3}{2})$.
$1 \le \frac{3}{e^x} \implies e^x \le 3 \implies x \le \ln(3)$.
So, for $\ln(\frac{3}{2}) < x \le \ln(3)$, $[\frac{3}{e^x}] = 1$.
\item For $[\frac{3}{e^x}] = 0$: This occurs when $0 \le \frac{3}{e^x} < 1$.
$\frac{3}{e^x} < 1 \implies e^x > 3 \implies x > \ln(3)$.
So, for $x > \ln(3)$, $[\frac{3}{e^x}] = 0$.
\end{enumerate} Now, we split the integral: k=∫0∞[ex3]dx=∫0ln(3/2)2dx+∫ln(3/2)ln(3)1dx+∫ln(3)∞0dx
Evaluate each integral: ∫0ln(3/2)2dx=2[x]0ln(3/2)=2(ln(23)−0)=2ln(23) ∫ln(3/2)ln(3)1dx=[x]ln(3/2)ln(3)=ln(3)−ln(23)=ln(3/23)=ln(2) ∫ln(3)∞0dx=0
Summing these gives k: k=2ln(23)+ln(2)=ln((23)2)+ln(2)=ln(49)+ln(2)=ln(49×2)=ln(29)
The question asks for ek: ek=eln(9/2)=29.
Note: The calculated value 29 is not present in the given options. Option (C) is 28=4. This suggests a potential typo in the question or options.
