Solveeit Logo

Question

Question: If $\int \frac{x(x+1)(2x^2-x+1)}{(x^3+x^2+x-1)^3}dx = \frac{1}{Af^2(x)}+C$ where f(1) = 2 then...

If x(x+1)(2x2x+1)(x3+x2+x1)3dx=1Af2(x)+C\int \frac{x(x+1)(2x^2-x+1)}{(x^3+x^2+x-1)^3}dx = \frac{1}{Af^2(x)}+C where f(1) = 2 then

A

A = -2

B

Range of function f is (,)(-\infty, \infty)

C

A = 2

D

f is many one function

Answer

A = -2, Range of function f is (,)(-\infty, \infty), f is many one function

Explanation

Solution

Let the given integral be II.

I=x(x+1)(2x2x+1)(x3+x2+x1)3dxI = \int \frac{x(x+1)(2x^2-x+1)}{(x^3+x^2+x-1)^3}dx

We are given that I=1Af2(x)+CI = \frac{1}{Af^2(x)}+C. Differentiating the right-hand side with respect to xx:

ddx(1Af2(x))=1Addx(f(x))2=1A(2)(f(x))3f(x)=2f(x)A(f(x))3\frac{d}{dx}\left(\frac{1}{Af^2(x)}\right) = \frac{1}{A} \frac{d}{dx}(f(x))^{-2} = \frac{1}{A} (-2) (f(x))^{-3} f'(x) = \frac{-2f'(x)}{A(f(x))^3}.

Comparing this with the integrand, we have:

x(x+1)(2x2x+1)(x3+x2+x1)3=2f(x)A(f(x))3\frac{x(x+1)(2x^2-x+1)}{(x^3+x^2+x-1)^3} = \frac{-2f'(x)}{A(f(x))^3}.

Let D(x)=x3+x2+x1D(x) = x^3+x^2+x-1. We observe that D(x)D(x) can be written as x(x2+x+11x)x(x^2+x+1-\frac{1}{x}).

Let's propose f(x)=x2+x+11xf(x) = x^2+x+1-\frac{1}{x}. Then D(x)=xf(x)D(x) = x \cdot f(x).

Substituting this into the comparison equation:

x(x+1)(2x2x+1)(xf(x))3=2f(x)A(f(x))3\frac{x(x+1)(2x^2-x+1)}{(x f(x))^3} = \frac{-2f'(x)}{A(f(x))^3}

x(x+1)(2x2x+1)x3(f(x))3=2f(x)A(f(x))3\frac{x(x+1)(2x^2-x+1)}{x^3 (f(x))^3} = \frac{-2f'(x)}{A(f(x))^3}

(x+1)(2x2x+1)x2=2f(x)A\frac{(x+1)(2x^2-x+1)}{x^2} = \frac{-2f'(x)}{A}

x(x+1)(2x2x+1)x3=2f(x)A\frac{x(x+1)(2x^2-x+1)}{x^3} = \frac{-2f'(x)}{A}.

(x+1)(2x2x+1)x2=2f(x)A\frac{(x+1)(2x^2-x+1)}{x^2} = \frac{-2f'(x)}{A}.

(1+1x)(21x+1x2)=2f(x)A(1+\frac{1}{x})(2-\frac{1}{x}+\frac{1}{x^2}) = \frac{-2f'(x)}{A}.

The left side is 21x+1x2+2x1x2+1x3=2+1x+1x32-\frac{1}{x}+\frac{1}{x^2}+\frac{2}{x}-\frac{1}{x^2}+\frac{1}{x^3} = 2+\frac{1}{x}+\frac{1}{x^3}.

Now, let's find f(x)f'(x) for f(x)=x2+x+11xf(x) = x^2+x+1-\frac{1}{x}:

f(x)=2x+1+1x2f'(x) = 2x+1+\frac{1}{x^2}.

Let's use the relation N(x)=2Af(x)(D(x)f(x))3N(x) = \frac{-2}{A} f'(x) \left(\frac{D(x)}{f(x)}\right)^3.

If f(x)=x2+x+11xf(x) = x^2+x+1-\frac{1}{x}, then D(x)=x(x2+x+11x)=xf(x)D(x) = x(x^2+x+1-\frac{1}{x}) = x f(x).

So D(x)f(x)=x\frac{D(x)}{f(x)} = x.

Therefore, N(x)=2Af(x)x3N(x) = \frac{-2}{A} f'(x) x^3.

The numerator N(x)=x(x+1)(2x2x+1)=(x2+x)(2x2x+1)=2x4x3+x2+2x3x2+x=2x4+x3+xN(x) = x(x+1)(2x^2-x+1) = (x^2+x)(2x^2-x+1) = 2x^4-x^3+x^2+2x^3-x^2+x = 2x^4+x^3+x.

And f(x)=ddx(x2+x+11x)=2x+1+1x2f'(x) = \frac{d}{dx}(x^2+x+1-\frac{1}{x}) = 2x+1+\frac{1}{x^2}.

So, N(x)=2A(2x+1+1x2)x3=2A(2x4+x3+x)N(x) = \frac{-2}{A} (2x+1+\frac{1}{x^2}) x^3 = \frac{-2}{A} (2x^4+x^3+x).

Comparing 2x4+x3+x2x^4+x^3+x with 2A(2x4+x3+x)\frac{-2}{A} (2x^4+x^3+x), we get:

1=2A    A=21 = \frac{-2}{A} \implies A = -2.

So, option (A) is correct.

Now let's verify the condition f(1)=2f(1)=2 and check other options using f(x)=x2+x+11xf(x) = x^2+x+1-\frac{1}{x}.

  1. f(1)=12+1+111=1+1+11=2f(1) = 1^2+1+1-\frac{1}{1} = 1+1+1-1=2. The condition f(1)=2f(1)=2 is satisfied.

  2. Option (B): Range of function ff is (,)(-\infty, \infty).

We analyze f(x)=x2+x+11xf(x) = x^2+x+1-\frac{1}{x}.

The derivative is f(x)=2x+1+1x2f'(x) = 2x+1+\frac{1}{x^2}.

For x>0x>0: 2x>02x>0, 1>01>0, 1x2>0\frac{1}{x^2}>0. So f(x)>0f'(x)>0 for all x>0x>0.

Thus f(x)f(x) is strictly increasing for x>0x>0.

As x0+x \to 0^+, f(x)0+0+1=f(x) \to 0+0+1-\infty = -\infty.

As xx \to \infty, f(x)++10=f(x) \to \infty+\infty+1-0 = \infty.

So for x(0,)x \in (0, \infty), the range of f(x)f(x) is (,)(-\infty, \infty).

For x<0x<0: f(x)=2x+1+1x2f'(x) = 2x+1+\frac{1}{x^2}.

Let's find critical points by setting f(x)=0f'(x)=0: 2x+1+1x2=0    2x3+x2+1=02x+1+\frac{1}{x^2}=0 \implies 2x^3+x^2+1=0.

By inspection, x=1x=-1 is a root: 2(1)3+(1)2+1=2+1+1=02(-1)^3+(-1)^2+1 = -2+1+1=0.

So f(1)=0f'(-1)=0.

f(1)=(1)2+(1)+11(1)=11+1+1=2f(-1) = (-1)^2+(-1)+1-\frac{1}{(-1)} = 1-1+1+1=2.

To determine if x=1x=-1 is a local extremum, we check the sign of f(x)f'(x) around x=1x=-1.

f(x)f'(x) is a polynomial in terms of xx and 1/x21/x^2.

As xx \to -\infty, f(x)f'(x) \to -\infty.

As x0x \to 0^-, f(x)f'(x) \to \infty.

Since f(1)=0f'(-1)=0 and f(x)f'(x) goes from -\infty to \infty, x=1x=-1 is a local minimum.

f()=limx(x2+x+11x)=f(-\infty) = \lim_{x \to -\infty} (x^2+x+1-\frac{1}{x}) = \infty.

f(0)=limx0(x2+x+11x)=f(0^-) = \lim_{x \to 0^-} (x^2+x+1-\frac{1}{x}) = -\infty.

So for x(,0)x \in (-\infty, 0), f(x)f(x) decreases from \infty to a minimum of f(1)=2f(-1)=2, and then increases from 22 to -\infty.

The range of f(x)f(x) for x(,0)x \in (-\infty, 0) is (,)(-\infty, \infty).

Combining both cases, the range of f(x)f(x) is (,)(-\infty, \infty). So option (B) is correct.

  1. Option (D): ff is many one function.

Since f(1)=2f(1)=2 and f(1)=2f(-1)=2, the function takes the same value for different inputs. Therefore, f(x)f(x) is a many-one function. So option (D) is correct.

Options (A), (B), and (D) are all correct.