Solveeit Logo

Question

Question: If $\frac{{}^9C_0}{8} - \frac{{}^9C_1}{9} + \frac{{}^9C_2}{10} - \frac{{}^9C_3}{11} + ... + \frac{{}...

If 9C089C19+9C2109C311+...+9C8169C917=1n\frac{{}^9C_0}{8} - \frac{{}^9C_1}{9} + \frac{{}^9C_2}{10} - \frac{{}^9C_3}{11} + ... + \frac{{}^9C_8}{16} - \frac{{}^9C_9}{17} = \frac{1}{n} then n is divisible by

A

7

B

11

C

13

D

17

Answer

11, 13, 17

Explanation

Solution

The given series is S=9C089C19+9C2109C311+...+9C8169C917S = \frac{{}^9C_0}{8} - \frac{{}^9C_1}{9} + \frac{{}^9C_2}{10} - \frac{{}^9C_3}{11} + ... + \frac{{}^9C_8}{16} - \frac{{}^9C_9}{17}. This can be written in summation form as S=r=09(1)r9Cr8+rS = \sum_{r=0}^{9} (-1)^r \frac{{}^9C_r}{8+r}.

We use the integral identity for binomial coefficients: r=0n(1)rnCrk+r=01xk1(1x)ndx\sum_{r=0}^{n} (-1)^r \frac{{}^nC_r}{k+r} = \int_0^1 x^{k-1} (1-x)^n dx.

In our case, n=9n=9 and k=8k=8. So, the sum SS can be expressed as: S=01x81(1x)9dx=01x7(1x)9dxS = \int_0^1 x^{8-1} (1-x)^9 dx = \int_0^1 x^7 (1-x)^9 dx.

This integral is a Beta function, B(a,b)=01xa1(1x)b1dx=Γ(a)Γ(b)Γ(a+b)B(a,b) = \int_0^1 x^{a-1}(1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}. Here, a1=7a=8a-1=7 \Rightarrow a=8 and b1=9b=10b-1=9 \Rightarrow b=10. So, S=B(8,10)=Γ(8)Γ(10)Γ(8+10)=Γ(8)Γ(10)Γ(18)S = B(8, 10) = \frac{\Gamma(8)\Gamma(10)}{\Gamma(8+10)} = \frac{\Gamma(8)\Gamma(10)}{\Gamma(18)}.

Using the property Γ(m)=(m1)!\Gamma(m) = (m-1)! for positive integers mm: S=(81)!(101)!(181)!=7!9!17!S = \frac{(8-1)!(10-1)!}{(18-1)!} = \frac{7! 9!}{17!}.

Now, we need to simplify this expression: S=7!×9!17×16×15×14×13×12×11×10×9!S = \frac{7! \times 9!}{17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9!}. Cancel 9!9! from numerator and denominator: S=7!17×16×15×14×13×12×11×10S = \frac{7!}{17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10}.

We know 7!=7×6×5×4×3×2×1=50407! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040. The denominator is D=17×16×15×14×13×12×11×10D = 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10.

Let's simplify by cancelling common factors: D=17×(24)×(3×5)×(2×7)×13×(22×3)×11×(2×5)D = 17 \times (2^4) \times (3 \times 5) \times (2 \times 7) \times 13 \times (2^2 \times 3) \times 11 \times (2 \times 5). D=17×13×11×(24+1+2+1)×(31+1)×(51+1)×71D = 17 \times 13 \times 11 \times (2^{4+1+2+1}) \times (3^{1+1}) \times (5^{1+1}) \times 7^1. D=17×13×11×28×32×52×7D = 17 \times 13 \times 11 \times 2^8 \times 3^2 \times 5^2 \times 7.

Numerator 7!=7×6×5×4×3×2×1=7×(2×3)×5×(22)×3×2=24×32×5×77! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7 \times (2 \times 3) \times 5 \times (2^2) \times 3 \times 2 = 2^4 \times 3^2 \times 5 \times 7.

Now, substitute these prime factorizations into the expression for SS: S=24×32×5×717×13×11×28×32×52×7S = \frac{2^4 \times 3^2 \times 5 \times 7}{17 \times 13 \times 11 \times 2^8 \times 3^2 \times 5^2 \times 7}.

Cancel common factors from numerator and denominator: 242^4 in numerator cancels with 282^8 in denominator, leaving 242^4 in denominator. 323^2 cancels out completely. 55 in numerator cancels with 525^2 in denominator, leaving 55 in denominator. 77 cancels out completely.

So, S=117×13×11×24×5S = \frac{1}{17 \times 13 \times 11 \times 2^4 \times 5}. S=117×13×11×16×5S = \frac{1}{17 \times 13 \times 11 \times 16 \times 5}.

Calculate the value of the denominator: 16×5=8016 \times 5 = 80. 11×13=14311 \times 13 = 143. 17×80=136017 \times 80 = 1360. 1360×143=1944801360 \times 143 = 194480.

So, S=1194480S = \frac{1}{194480}. The problem states that S=1nS = \frac{1}{n}, so n=194480n = 194480.

We need to find which of the given options (7, 11, 13, 17) divides nn. From the prime factorization of nn (which is the denominator calculated above): n=17×13×11×24×5n = 17 \times 13 \times 11 \times 2^4 \times 5. The prime factors of nn are 2,5,11,13,172, 5, 11, 13, 17.

Checking the options:

(A) 7: nn is not divisible by 7. (B) 11: nn is divisible by 11. (C) 13: nn is divisible by 13. (D) 17: nn is divisible by 17.

Since the question asks "then n is divisible by", and multiple options are correct, we must select all correct options.