Solveeit Logo

Question

Question: If $f:\mathbb{R} \to \mathbb{R}$ is a function satisfying the property $f(x+1)+f(x+3)=2$ for all $x ...

If f:RRf:\mathbb{R} \to \mathbb{R} is a function satisfying the property f(x+1)+f(x+3)=2f(x+1)+f(x+3)=2 for all xRx \in \mathbb{R}, then ff is

A

periodic with period 3

B

periodic with period 4

C

non-periodic

D

periodic with period 5

Answer

periodic with period 4

Explanation

Solution

The given functional equation is f(x+1)+f(x+3)=2f(x+1)+f(x+3)=2 for all xRx \in \mathbb{R}.

To check for periodicity, we look for a positive real number TT such that f(x+T)=f(x)f(x+T) = f(x) for all xRx \in \mathbb{R}.

Replace xx with x+1x+1: f(x+2)+f(x+4)=2f(x+2) + f(x+4) = 2 for all xRx \in \mathbb{R}.

Replace xx with x+2x+2: f(x+3)+f(x+5)=2f(x+3) + f(x+5) = 2 for all xRx \in \mathbb{R}.

From equation (1), we can express f(x+3)f(x+3) as: f(x+3)=2f(x+1)f(x+3) = 2 - f(x+1)

Substitute this expression for f(x+3)f(x+3) into equation (3): (2f(x+1))+f(x+5)=2(2 - f(x+1)) + f(x+5) = 2 2f(x+1)+f(x+5)=22 - f(x+1) + f(x+5) = 2 f(x+1)+f(x+5)=0-f(x+1) + f(x+5) = 0 f(x+5)=f(x+1)f(x+5) = f(x+1) for all xRx \in \mathbb{R}.

Let y=x+1y = x+1. Then: f(y+4)=f(y)f(y+4) = f(y) for all yRy \in \mathbb{R}.

This equation f(y+4)=f(y)f(y+4) = f(y) shows that the function ff is periodic with period 4.