Solveeit Logo

Question

Question: If $\alpha,\beta$ are two acute angles such that $\alpha + \beta = \gamma$, where $\gamma$ is a cons...

If α,β\alpha,\beta are two acute angles such that α+β=γ\alpha + \beta = \gamma, where γ\gamma is a constant, then maximum value of (sinα+cosα+sinβ+cosβ)(sin\alpha + cos\alpha + sin\beta + cos\beta) is

A

222\sqrt{2}

B

22sin(π4+γ2)2\sqrt{2}sin(\frac{\pi}{4}+\frac{\gamma}{2})

C

22sin(π4+γ)2\sqrt{2}sin(\frac{\pi}{4}+\gamma)

D

2sin(π4+γ2)\sqrt{2}sin(\frac{\pi}{4}+\frac{\gamma}{2})

Answer

2\sqrt{2}sin(\frac{\pi}{4}+\frac{\gamma}{2})

Explanation

Solution

Let the given expression be EE.
E=sinα+cosα+sinβ+cosβE = \sin\alpha + \cos\alpha + \sin\beta + \cos\beta

We know the identity asinx+bcosx=a2+b2sin(x+δ)a \sin x + b \cos x = \sqrt{a^2+b^2} \sin(x+\delta), where cosδ=aa2+b2\cos\delta = \frac{a}{\sqrt{a^2+b^2}} and sinδ=ba2+b2\sin\delta = \frac{b}{\sqrt{a^2+b^2}}.
For a=1,b=1a=1, b=1, we have 12+12=2\sqrt{1^2+1^2} = \sqrt{2}.
So, sinx+cosx=2(12sinx+12cosx)=2(cosπ4sinx+sinπ4cosx)\sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x \right) = \sqrt{2} \left( \cos\frac{\pi}{4}\sin x + \sin\frac{\pi}{4}\cos x \right).
Using the formula sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin B, we get:
sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right).

Applying this to the expression EE:
E=2sin(α+π4)+2sin(β+π4)E = \sqrt{2} \sin\left(\alpha + \frac{\pi}{4}\right) + \sqrt{2} \sin\left(\beta + \frac{\pi}{4}\right)
E=2[sin(α+π4)+sin(β+π4)]E = \sqrt{2} \left[ \sin\left(\alpha + \frac{\pi}{4}\right) + \sin\left(\beta + \frac{\pi}{4}\right) \right]

Now, use the sum-to-product trigonometric identity: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).
Let A=α+π4A = \alpha + \frac{\pi}{4} and B=β+π4B = \beta + \frac{\pi}{4}.
Then,
A+B=(α+π4)+(β+π4)=α+β+π2A+B = \left(\alpha + \frac{\pi}{4}\right) + \left(\beta + \frac{\pi}{4}\right) = \alpha + \beta + \frac{\pi}{2}.
Given that α+β=γ\alpha + \beta = \gamma, so A+B=γ+π2A+B = \gamma + \frac{\pi}{2}.
Therefore, A+B2=γ2+π4\frac{A+B}{2} = \frac{\gamma}{2} + \frac{\pi}{4}.

And,
AB=(α+π4)(β+π4)=αβA-B = \left(\alpha + \frac{\pi}{4}\right) - \left(\beta + \frac{\pi}{4}\right) = \alpha - \beta.
Therefore, AB2=αβ2\frac{A-B}{2} = \frac{\alpha - \beta}{2}.

Substitute these into the expression for EE:
E=2[2sin(γ2+π4)cos(αβ2)]E = \sqrt{2} \left[ 2 \sin\left(\frac{\gamma}{2} + \frac{\pi}{4}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \right]
E=22sin(π4+γ2)cos(αβ2)E = 2\sqrt{2} \sin\left(\frac{\pi}{4} + \frac{\gamma}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)

To find the maximum value of EE, we need to maximize the term cos(αβ2)\cos\left(\frac{\alpha - \beta}{2}\right), since 22sin(π4+γ2)2\sqrt{2} \sin\left(\frac{\pi}{4} + \frac{\gamma}{2}\right) is a constant (as γ\gamma is a constant).
The maximum value of the cosine function is 1.
So, cos(αβ2)\cos\left(\frac{\alpha - \beta}{2}\right) will be maximum when it equals 1.
This occurs when αβ2=0\frac{\alpha - \beta}{2} = 0, which implies αβ=0\alpha - \beta = 0, or α=β\alpha = \beta.

Given that α\alpha and β\beta are acute angles, 0<α<π20 < \alpha < \frac{\pi}{2} and 0<β<π20 < \beta < \frac{\pi}{2}.
If α=β\alpha = \beta, then α+β=2α=γ\alpha + \beta = 2\alpha = \gamma.
So, α=β=γ2\alpha = \beta = \frac{\gamma}{2}.
For α\alpha and β\beta to be acute angles, we must have 0<γ2<π20 < \frac{\gamma}{2} < \frac{\pi}{2}, which implies 0<γ<π0 < \gamma < \pi. This condition is consistent with the problem statement.

When cos(αβ2)=1\cos\left(\frac{\alpha - \beta}{2}\right) = 1, the maximum value of EE is:
Emax=22sin(π4+γ2)×1E_{max} = 2\sqrt{2} \sin\left(\frac{\pi}{4} + \frac{\gamma}{2}\right) \times 1
Emax=22sin(π4+γ2)E_{max} = 2\sqrt{2} \sin\left(\frac{\pi}{4} + \frac{\gamma}{2}\right)