Solveeit Logo

Question

Question: 5 g of ice at −10 ∘ C is mixed with 20 g of water at 30 DEGREE CENTIGRSDE ∘ C. The equilibrium t...

5 g of ice at −10 ∘ C is mixed with 20 g of water at 30 DEGREE CENTIGRSDE ∘ C. The equilibrium temperature of mixture will be (specific heat of ice=0.5 g ∘ C Cal ​ )

A

10 ∘ C

B

5 ∘ C

C

7 ∘ C

D

0 ∘ C

Answer

7 ∘ C

Explanation

Solution

  1. Heat to warm ice to 0°C (Q1Q_1): Q1=micesiceΔT=5 g0.5 Cal/g°C(0(10)C)=25Q_1 = m_{ice} \cdot s_{ice} \cdot \Delta T = 5 \text{ g} \cdot 0.5 \text{ Cal/g°C} \cdot (0 - (-10)^\circ\text{C}) = 25 Cal.

  2. Heat to melt ice at 0°C (Q2Q_2): Q2=miceLf=5 g80 Cal/g=400Q_2 = m_{ice} \cdot L_f = 5 \text{ g} \cdot 80 \text{ Cal/g} = 400 Cal. Total heat to convert ice to water at 0°C = Q1+Q2=425Q_1 + Q_2 = 425 Cal.

  3. Heat available from water cooling to 0°C (Qwater_to_0Q_{water\_to\_0}): Qwater_to_0=mwaterswaterΔT=20 g1 Cal/g°C(30C0C)=600Q_{water\_to\_0} = m_{water} \cdot s_{water} \cdot \Delta T = 20 \text{ g} \cdot 1 \text{ Cal/g°C} \cdot (30^\circ\text{C} - 0^\circ\text{C}) = 600 Cal.

  4. Since 600600 Cal >425> 425 Cal, all ice melts, and the final temperature will be above 0°C.

  5. Heat balance for equilibrium temperature TT: Heat gained by ice (warming from 0°C to TT) = Heat lost by water (cooling from 30°C to TT). (Q1+Q2)+miceswater(T0C)=mwaterswater(30CT)(Q_1 + Q_2) + m_{ice} \cdot s_{water} \cdot (T - 0^\circ\text{C}) = m_{water} \cdot s_{water} \cdot (30^\circ\text{C} - T) 425+51T=201(30T)425 + 5 \cdot 1 \cdot T = 20 \cdot 1 \cdot (30 - T) 425+5T=60020T425 + 5T = 600 - 20T 25T=17525T = 175 T=7T = 7^\circC