Solveeit Logo

Question

Question: For any $\theta \in (\frac{\pi}{4},\frac{\pi}{2})$, the expression 3(sin$\theta$ - cos$\theta$)$^4$ ...

For any θ(π4,π2)\theta \in (\frac{\pi}{4},\frac{\pi}{2}), the expression 3(sinθ\theta - cosθ\theta)4^4 + 6(sinθ\theta + cosθ\theta)2^2 + 4sin^6$$\theta equals :

[JEE-MAIN 2019]

A

13 - 4 cos6θ\theta

B

13 - 4 cos4θ\theta + 2 sin^2$$\thetacos2θ\theta

C

13 - 4 cos2θ\theta + 6 cos4θ\theta

D

13 - 4 cos2θ\theta + 6 sin2θ\thetacos2θ\theta

Answer

No option matches

Explanation

Solution

Let the given expression be EE.

E=3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θE = 3(\sin\theta - \cos\theta)^4 + 6(\sin\theta + \cos\theta)^2 + 4\sin^6\theta

We know the following trigonometric identities:

  1. (sinθcosθ)2=sin2θ+cos2θ2sinθcosθ=1sin(2θ)(\sin\theta - \cos\theta)^2 = \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta = 1 - \sin(2\theta)

  2. (sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+sin(2θ)(\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1 + \sin(2\theta)

  3. sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}

  4. cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}

  5. cos(3A)=4cos3A3cosA    cos3A=cos(3A)+3cosA4\cos(3A) = 4\cos^3A - 3\cos A \implies \cos^3A = \frac{\cos(3A) + 3\cos A}{4}

Let's simplify the first two terms:

3(sinθcosθ)4=3[(sinθcosθ)2]2=3(1sin(2θ))23(\sin\theta - \cos\theta)^4 = 3[(\sin\theta - \cos\theta)^2]^2 = 3(1 - \sin(2\theta))^2

6(sinθ+cosθ)2=6(1+sin(2θ))6(\sin\theta + \cos\theta)^2 = 6(1 + \sin(2\theta))

Combining these two parts:

3(1sin(2θ))2+6(1+sin(2θ))3(1 - \sin(2\theta))^2 + 6(1 + \sin(2\theta))

=3(12sin(2θ)+sin2(2θ))+6+6sin(2θ)= 3(1 - 2\sin(2\theta) + \sin^2(2\theta)) + 6 + 6\sin(2\theta)

=36sin(2θ)+3sin2(2θ)+6+6sin(2θ)= 3 - 6\sin(2\theta) + 3\sin^2(2\theta) + 6 + 6\sin(2\theta)

=9+3sin2(2θ)= 9 + 3\sin^2(2\theta)

Now, let's simplify the third term, 4sin6θ4\sin^6\theta:

4sin6θ=4(sin2θ)34\sin^6\theta = 4(\sin^2\theta)^3

Substitute sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}:

4(1cos(2θ)2)3=4(1cos(2θ))38=12(1cos(2θ))34\left(\frac{1 - \cos(2\theta)}{2}\right)^3 = 4\frac{(1 - \cos(2\theta))^3}{8} = \frac{1}{2}(1 - \cos(2\theta))^3

Expand (1cos(2θ))3(1 - \cos(2\theta))^3 using (ab)3=a33a2b+3ab2b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3:

12(13cos(2θ)+3cos2(2θ)cos3(2θ))\frac{1}{2}(1 - 3\cos(2\theta) + 3\cos^2(2\theta) - \cos^3(2\theta))

Now, substitute cos2(2θ)=1+cos(4θ)2\cos^2(2\theta) = \frac{1 + \cos(4\theta)}{2} and cos3(2θ)=cos(6θ)+3cos(2θ)4\cos^3(2\theta) = \frac{\cos(6\theta) + 3\cos(2\theta)}{4}:

12(13cos(2θ)+3(1+cos(4θ)2)(cos(6θ)+3cos(2θ)4))\frac{1}{2}\left(1 - 3\cos(2\theta) + 3\left(\frac{1 + \cos(4\theta)}{2}\right) - \left(\frac{\cos(6\theta) + 3\cos(2\theta)}{4}\right)\right)

=12(13cos(2θ)+32+32cos(4θ)14cos(6θ)34cos(2θ))= \frac{1}{2}\left(1 - 3\cos(2\theta) + \frac{3}{2} + \frac{3}{2}\cos(4\theta) - \frac{1}{4}\cos(6\theta) - \frac{3}{4}\cos(2\theta)\right)

Combine constant terms and cos(2θ)\cos(2\theta) terms:

=12((1+32)(3+34)cos(2θ)+32cos(4θ)14cos(6θ))= \frac{1}{2}\left(\left(1 + \frac{3}{2}\right) - \left(3 + \frac{3}{4}\right)\cos(2\theta) + \frac{3}{2}\cos(4\theta) - \frac{1}{4}\cos(6\theta)\right)

=12(52154cos(2θ)+32cos(4θ)14cos(6θ))= \frac{1}{2}\left(\frac{5}{2} - \frac{15}{4}\cos(2\theta) + \frac{3}{2}\cos(4\theta) - \frac{1}{4}\cos(6\theta)\right)

=54158cos(2θ)+34cos(4θ)18cos(6θ)= \frac{5}{4} - \frac{15}{8}\cos(2\theta) + \frac{3}{4}\cos(4\theta) - \frac{1}{8}\cos(6\theta)

Now, add this to 9+3sin2(2θ)9 + 3\sin^2(2\theta).

First, express 3sin2(2θ)3\sin^2(2\theta) in terms of cos(4θ)\cos(4\theta):

3sin2(2θ)=3(1cos(4θ)2)=3232cos(4θ)3\sin^2(2\theta) = 3\left(\frac{1 - \cos(4\theta)}{2}\right) = \frac{3}{2} - \frac{3}{2}\cos(4\theta).

So, the total expression is:

E=9+(3232cos(4θ))+(54158cos(2θ)+34cos(4θ)18cos(6θ))E = 9 + \left(\frac{3}{2} - \frac{3}{2}\cos(4\theta)\right) + \left(\frac{5}{4} - \frac{15}{8}\cos(2\theta) + \frac{3}{4}\cos(4\theta) - \frac{1}{8}\cos(6\theta)\right)

Combine constant terms: 9+32+54=36+6+54=4749 + \frac{3}{2} + \frac{5}{4} = \frac{36+6+5}{4} = \frac{47}{4}.

Combine cos(2θ)\cos(2\theta) terms: 158cos(2θ)-\frac{15}{8}\cos(2\theta).

Combine cos(4θ)\cos(4\theta) terms: 32cos(4θ)+34cos(4θ)=(64+34)cos(4θ)=34cos(4θ)-\frac{3}{2}\cos(4\theta) + \frac{3}{4}\cos(4\theta) = \left(-\frac{6}{4} + \frac{3}{4}\right)\cos(4\theta) = -\frac{3}{4}\cos(4\theta).

Combine cos(6θ)\cos(6\theta) terms: 18cos(6θ)-\frac{1}{8}\cos(6\theta).

So, E=474158cos(2θ)34cos(4θ)18cos(6θ)E = \frac{47}{4} - \frac{15}{8}\cos(2\theta) - \frac{3}{4}\cos(4\theta) - \frac{1}{8}\cos(6\theta).

This expression does not directly match any of the options. This suggests there might be a simpler way or an identity that was missed. The problem is likely flawed.