Question
Question: Evaluate: $\lim_{m\to\infty} \left(m^3 \int_m^{2m} \frac{xdx}{x^5+1}\right)$, $(m \in N, 0<x<1)$...
Evaluate: limm→∞(m3∫m2mx5+1xdx), (m∈N,0<x<1)

A
722
B
227
C
724
D
247
Answer
247
Explanation
Solution
For large x, note that:
x5+1≈x5⟹x5+1x≈x5x=x41.Thus:
∫m2mx5+1xdx≈∫m2mx4dx.Evaluating the approximate integral:
∫x4dx=−3x31+C.So,
∫m2mx4dx=[−3x31]m2m=−3(2m)31+3m31=3m31−24m31=24m38−1=24m37.Multiplying by m3:
m3∫m2mx5+1xdx≈m3⋅24m37=247.Taking the limit as m→∞ gives:
m→∞lim(m3∫m2mx5+1xdx)=247.