Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

5cos1(1x21+x2)+7sin1(2x1+x2)4tan1(2x1+x2)tan1x=5π5\,\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) +7\,\sin^{-1}\left(\frac{2x}{1+x^2}\right)-4\,\tan^{-1}\left(\frac{2x}{1+x^2}\right)-\tan^{-1}x=5\pi , then x is equal to

A

33

B

3-\sqrt3

C

3\sqrt3

D

2

Answer

3\sqrt3

Explanation

Solution

Given that 5cos1(1x21+x2)+7sin1(2x1+x2)5 \,cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}}\right)+7\,sin^{-1}\left(\frac{2x}{1+x^{2}}\right) 4tan1(2x1+x2)tan1x=5π-4\,tan^{-1} \left(\frac{2x}{1+x^{2}}\right)-tan^{-1}x = 5\pi 5(2tan1x)+7(2tan1x)4(2tan1x)tan1x=5π\therefore 5\left(2\,tan^{-1} x\right)+7\left(2\,tan^{-1}x\right)-4\left(2\,tan^{-1}x\right)- tan^{-1}x = 5\pi 5(2tan1x)+7(2tan1)4(2tan1x)tan1x=5π\therefore 5\left(2\,tan^{-1}x\right)+7\left(2\,tan^{-1}\right)-4\left(2\,tan^{-1}x\right)-tan^{-1}x = 5\pi 15tan1x=5π \Rightarrow 15\,tan^{-1}x = 5\pi tan1x=π3\Rightarrow tan^{-1}x = \frac{\pi}{3} x=tanπ3 \Rightarrow x= tan \frac{\pi}{3} x=3 \Rightarrow x= \sqrt{3}