Solveeit Logo

Question

Question: Centre of mass of two thin uniform rods of same length but made up of different materials & kept as ...

Centre of mass of two thin uniform rods of same length but made up of different materials & kept as shown, can be, if the meeting point is the origin of co-ordinates

A

(L/2, L/2)

B

(2L/3, L/2)

C

(L/3, L/3)

D

(L/3, L/6)

Answer

(D)

Explanation

Solution

To determine the center of mass of the system, we first identify the individual components and their respective centers of mass and masses.

  1. Identify the rods and their properties:

    • Let the horizontal rod be Rod 1 and the vertical rod be Rod 2.
    • Both rods have the same length, LL.
    • They are thin and uniform.
    • They are made of different materials, implying their linear mass densities are different. Let λ1\lambda_1 be the linear mass density of Rod 1 and λ2\lambda_2 be the linear mass density of Rod 2.
    • The meeting point of the rods is the origin (0,0).
  2. Calculate the mass and center of mass for each rod:

    • Rod 1 (Horizontal):
      • It extends from (0,0) to (L,0) along the x-axis.
      • Its mass, M1=λ1LM_1 = \lambda_1 L.
      • Its center of mass, CM1=(L/2,0)CM_1 = (L/2, 0).
    • Rod 2 (Vertical):
      • It extends from (0,0) to (0,L) along the y-axis.
      • Its mass, M2=λ2LM_2 = \lambda_2 L.
      • Its center of mass, CM2=(0,L/2)CM_2 = (0, L/2).
  3. Calculate the center of mass of the combined system:

    The coordinates of the center of mass (XCM,YCMX_{CM}, Y_{CM}) for a system of two objects are given by:

    XCM=M1x1+M2x2M1+M2X_{CM} = \frac{M_1 x_1 + M_2 x_2}{M_1 + M_2}

    YCM=M1y1+M2y2M1+M2Y_{CM} = \frac{M_1 y_1 + M_2 y_2}{M_1 + M_2}

    Substitute the values:

    XCM=(λ1L)(L/2)+(λ2L)(0)λ1L+λ2L=λ1L2/2(λ1+λ2)L=λ1L2(λ1+λ2)X_{CM} = \frac{(\lambda_1 L)(L/2) + (\lambda_2 L)(0)}{\lambda_1 L + \lambda_2 L} = \frac{\lambda_1 L^2/2}{(\lambda_1 + \lambda_2)L} = \frac{\lambda_1 L}{2(\lambda_1 + \lambda_2)}

    YCM=(λ1L)(0)+(λ2L)(L/2)λ1L+λ2L=λ2L2/2(λ1+λ2)L=λ2L2(λ1+λ2)Y_{CM} = \frac{(\lambda_1 L)(0) + (\lambda_2 L)(L/2)}{\lambda_1 L + \lambda_2 L} = \frac{\lambda_2 L^2/2}{(\lambda_1 + \lambda_2)L} = \frac{\lambda_2 L}{2(\lambda_1 + \lambda_2)}

  4. Analyze the possible range of XCMX_{CM} and YCMY_{CM}:

    Since λ1>0\lambda_1 > 0 and λ2>0\lambda_2 > 0 (rods have mass), we can deduce:

    • 0<λ1λ1+λ2<1    0<XCM<L/20 < \frac{\lambda_1}{\lambda_1 + \lambda_2} < 1 \implies 0 < X_{CM} < L/2
    • 0<λ2λ1+λ2<1    0<YCM<L/20 < \frac{\lambda_2}{\lambda_1 + \lambda_2} < 1 \implies 0 < Y_{CM} < L/2

    Also, note that λ1λ1+λ2+λ2λ1+λ2=1\frac{\lambda_1}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda_1 + \lambda_2} = 1. Let k1=λ1λ1+λ2k_1 = \frac{\lambda_1}{\lambda_1 + \lambda_2} and k2=λ2λ1+λ2k_2 = \frac{\lambda_2}{\lambda_1 + \lambda_2}. Then XCM=k1(L/2)X_{CM} = k_1 (L/2) and YCM=k2(L/2)Y_{CM} = k_2 (L/2), with k1+k2=1k_1 + k_2 = 1.

  5. Check the given options:

    • (A) (L/2, L/2):

      If XCM=L/2X_{CM} = L/2, then λ1L2(λ1+λ2)=L/2    λ1=λ1+λ2    λ2=0\frac{\lambda_1 L}{2(\lambda_1 + \lambda_2)} = L/2 \implies \lambda_1 = \lambda_1 + \lambda_2 \implies \lambda_2 = 0.

      If YCM=L/2Y_{CM} = L/2, then λ2L2(λ1+λ2)=L/2    λ2=λ1+λ2    λ1=0\frac{\lambda_2 L}{2(\lambda_1 + \lambda_2)} = L/2 \implies \lambda_2 = \lambda_1 + \lambda_2 \implies \lambda_1 = 0.

      For (L/2,L/2)(L/2, L/2) to be the CM, both λ1\lambda_1 and λ2\lambda_2 would have to be zero, which is not possible for physical rods. If λ2=0\lambda_2=0, YCM=0Y_{CM}=0, not L/2L/2. So, (A) is incorrect.

    • (B) (2L/3, L/2):

      Here XCM=2L/3X_{CM} = 2L/3. However, we established that XCMX_{CM} must be less than L/2L/2. Since 2L/3>L/22L/3 > L/2, this option is incorrect.

    • (C) (L/3, L/3):

      If XCM=L/3X_{CM} = L/3, then λ1L2(λ1+λ2)=L/3    λ1λ1+λ2=2/3\frac{\lambda_1 L}{2(\lambda_1 + \lambda_2)} = L/3 \implies \frac{\lambda_1}{\lambda_1 + \lambda_2} = 2/3.

      If YCM=L/3Y_{CM} = L/3, then λ2L2(λ1+λ2)=L/3    λ2λ1+λ2=2/3\frac{\lambda_2 L}{2(\lambda_1 + \lambda_2)} = L/3 \implies \frac{\lambda_2}{\lambda_1 + \lambda_2} = 2/3.

      Adding these two ratios: λ1λ1+λ2+λ2λ1+λ2=2/3+2/3=4/3\frac{\lambda_1}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda_1 + \lambda_2} = 2/3 + 2/3 = 4/3.

      However, the sum of these ratios must be 1: λ1+λ2λ1+λ2=1\frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2} = 1.

      Since 4/314/3 \neq 1, this option is inconsistent and incorrect.

    • (D) (L/3, L/6):

      If XCM=L/3X_{CM} = L/3, then λ1L2(λ1+λ2)=L/3    λ1λ1+λ2=2/3\frac{\lambda_1 L}{2(\lambda_1 + \lambda_2)} = L/3 \implies \frac{\lambda_1}{\lambda_1 + \lambda_2} = 2/3.

      This implies 3λ1=2(λ1+λ2)    3λ1=2λ1+2λ2    λ1=2λ23\lambda_1 = 2(\lambda_1 + \lambda_2) \implies 3\lambda_1 = 2\lambda_1 + 2\lambda_2 \implies \lambda_1 = 2\lambda_2.

      If YCM=L/6Y_{CM} = L/6, then λ2L2(λ1+λ2)=L/6    λ2λ1+λ2=1/3\frac{\lambda_2 L}{2(\lambda_1 + \lambda_2)} = L/6 \implies \frac{\lambda_2}{\lambda_1 + \lambda_2} = 1/3.

      This implies 3λ2=λ1+λ2    λ1=2λ23\lambda_2 = \lambda_1 + \lambda_2 \implies \lambda_1 = 2\lambda_2.

      Both coordinates yield the same condition: λ1=2λ2\lambda_1 = 2\lambda_2.

      This is a valid scenario as λ1λ2\lambda_1 \neq \lambda_2 (since λ2>0\lambda_2 > 0), consistent with the rods being made of different materials. Thus, this option is possible.