Solveeit Logo

Question

Question: At a given temperature the osmotic pressure of 0.1 M $Fe_2(SO_4)_3$ aqueous solution is nearest to t...

At a given temperature the osmotic pressure of 0.1 M Fe2(SO4)3Fe_2(SO_4)_3 aqueous solution is nearest to that of 10L aqueous solution of: (Consider 100% dissociation of electrolytes) (If atomic mass of Ca = 40u, Cl = 35.5u, P = 31u, O = 15u, K = 39u, H = lu, N = 14u, Fe = 56u)

A

111 grams CaCl2CaCl_2

B

310 grams Ca3[PO4]2Ca_3[PO_4]_2

C

342 grams C12H22O11C_{12}H_{22}O_{11}

D

368 grams K4[Fe(CN)6]K_4[Fe(CN)_6]

Answer

D

Explanation

Solution

The osmotic pressure (Π\Pi) of a solution is given by the formula: Π=iCRT\Pi = iCRT

where:

  • ii is the van't Hoff factor (number of particles produced per formula unit of solute).
  • CC is the molar concentration of the solute.
  • RR is the ideal gas constant.
  • TT is the temperature in Kelvin.

Since the temperature (T) and the gas constant (R) are the same for all solutions, the osmotic pressure will be proportional to the product iCiC. We need to find the option whose iCiC value is closest to that of the given Fe2(SO4)3Fe_2(SO_4)_3 solution.

1. Calculate iCiC for the reference solution: 0.1 M Fe2(SO4)3Fe_2(SO_4)_3

Fe2(SO4)3Fe_2(SO_4)_3 dissociates as: Fe2(SO4)32Fe3++3SO42Fe_2(SO_4)_3 \rightarrow 2Fe^{3+} + 3SO_4^{2-}

Since 100% dissociation is assumed, the van't Hoff factor i=2+3=5i = 2 + 3 = 5.

The concentration C=0.1C = 0.1 M.

So, for Fe2(SO4)3Fe_2(SO_4)_3, iC=5×0.1=0.5iC = 5 \times 0.1 = 0.5.

2. Calculate iCiC for each option:

Option (A): 111 grams CaCl2CaCl_2 in 10L aqueous solution

  • Molar mass of CaCl2CaCl_2: 40 (Ca)+2×35.5 (Cl)=40+71=11140 \text{ (Ca)} + 2 \times 35.5 \text{ (Cl)} = 40 + 71 = 111 g/mol.
  • Moles of CaCl2CaCl_2: 111 g111 g/mol=1\frac{111 \text{ g}}{111 \text{ g/mol}} = 1 mol.
  • Concentration (C): 1 mol10 L=0.1\frac{1 \text{ mol}}{10 \text{ L}} = 0.1 M.
  • Dissociation: CaCl2Ca2++2ClCaCl_2 \rightarrow Ca^{2+} + 2Cl^-
  • Van't Hoff factor (i): 1+2=31 + 2 = 3.
  • iCiC value: 3×0.1=0.33 \times 0.1 = 0.3.
  • Difference from target: 0.50.3=0.2|0.5 - 0.3| = 0.2.

Option (B): 310 grams Ca3[PO4]2Ca_3[PO_4]_2 in 10L aqueous solution

  • Molar mass of Ca3[PO4]2Ca_3[PO_4]_2: 3×40 (Ca)+2×(31 (P)+4×15 (O))=120+2×(31+60)=120+2×91=120+182=3023 \times 40 \text{ (Ca)} + 2 \times (31 \text{ (P)} + 4 \times 15 \text{ (O)}) = 120 + 2 \times (31 + 60) = 120 + 2 \times 91 = 120 + 182 = 302 g/mol.
  • Moles of Ca3[PO4]2Ca_3[PO_4]_2: 310 g302 g/mol1.0265\frac{310 \text{ g}}{302 \text{ g/mol}} \approx 1.0265 mol.
  • Concentration (C): 1.0265 mol10 L=0.10265\frac{1.0265 \text{ mol}}{10 \text{ L}} = 0.10265 M.
  • Dissociation: Ca3[PO4]23Ca2++2PO43Ca_3[PO_4]_2 \rightarrow 3Ca^{2+} + 2PO_4^{3-}
  • Van't Hoff factor (i): 3+2=53 + 2 = 5.
  • iCiC value: 5×0.10265=0.513255 \times 0.10265 = 0.51325.
  • Difference from target: 0.50.51325=0.01325|0.5 - 0.51325| = 0.01325.

Option (C): 342 grams C12H22O11C_{12}H_{22}O_{11} in 10L aqueous solution

  • Molar mass of C12H22O11C_{12}H_{22}O_{11}: 12×12 (C)+22×1 (H)+11×15 (O)=144+22+165=33112 \times 12 \text{ (C)} + 22 \times 1 \text{ (H)} + 11 \times 15 \text{ (O)} = 144 + 22 + 165 = 331 g/mol.
  • Moles of C12H22O11C_{12}H_{22}O_{11}: 342 g331 g/mol1.0332\frac{342 \text{ g}}{331 \text{ g/mol}} \approx 1.0332 mol.
  • Concentration (C): 1.0332 mol10 L=0.10332\frac{1.0332 \text{ mol}}{10 \text{ L}} = 0.10332 M.
  • Dissociation: Sucrose is a non-electrolyte, so it does not dissociate.
  • Van't Hoff factor (i): 11.
  • iCiC value: 1×0.10332=0.103321 \times 0.10332 = 0.10332.
  • Difference from target: 0.50.10332=0.39668|0.5 - 0.10332| = 0.39668.

Option (D): 368 grams K4[Fe(CN)6]K_4[Fe(CN)_6] in 10L aqueous solution

  • Molar mass of K4[Fe(CN)6]K_4[Fe(CN)_6]: 4×39 (K)+56 (Fe)+6×12 (C)+6×14 (N)=156+56+72+84=3684 \times 39 \text{ (K)} + 56 \text{ (Fe)} + 6 \times 12 \text{ (C)} + 6 \times 14 \text{ (N)} = 156 + 56 + 72 + 84 = 368 g/mol.
  • Moles of K4[Fe(CN)6]K_4[Fe(CN)_6]: 368 g368 g/mol=1\frac{368 \text{ g}}{368 \text{ g/mol}} = 1 mol.
  • Concentration (C): 1 mol10 L=0.1\frac{1 \text{ mol}}{10 \text{ L}} = 0.1 M.
  • Dissociation: K4[Fe(CN)6]4K++[Fe(CN)6]4K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-}
  • Van't Hoff factor (i): 4+1=54 + 1 = 5.
  • iCiC value: 5×0.1=0.55 \times 0.1 = 0.5.
  • Difference from target: 0.50.5=0|0.5 - 0.5| = 0.

3. Comparison of iCiC values:

  • Reference Fe2(SO4)3Fe_2(SO_4)_3: iC=0.5iC = 0.5
  • Option (A) CaCl2CaCl_2: iC=0.3iC = 0.3 (Difference = 0.2)
  • Option (B) Ca3[PO4]2Ca_3[PO_4]_2: iC=0.51325iC = 0.51325 (Difference = 0.01325)
  • Option (C) C12H22O11C_{12}H_{22}O_{11}: iC=0.10332iC = 0.10332 (Difference = 0.39668)
  • Option (D) K4[Fe(CN)6]K_4[Fe(CN)_6]: iC=0.5iC = 0.5 (Difference = 0)

Option (D) has an iCiC value exactly equal to the reference solution, meaning its osmotic pressure is identical. Therefore, it is the nearest.