Solveeit Logo

Question

Question: A player tosses 2 fair coins. He wins ₹ 5 if 2 heads appear, ₹ 21 if 1 head appears a) if no heads a...

A player tosses 2 fair coins. He wins ₹ 5 if 2 heads appear, ₹ 21 if 1 head appears a) if no heads appear, then the variance of his winning amount is

A

1419/16

Answer

1419/16

Explanation

Solution

We are given a two‐coin toss game where the winning amounts are:

  • ₹5 if 2 heads appear,
  • ₹21 if 1 head appears, and
  • ₹0 if no heads appear.

Let the random variable XX denote the winning amount. The probabilities are:

P(X=5)=14,P(X=21)=12,P(X=0)=14.P(X=5)=\frac{1}{4},\quad P(X=21)=\frac{1}{2},\quad P(X=0)=\frac{1}{4}.

Step 1. Compute the expected value E[X]E[X]:

E[X]=5(14)+21(12)+0(14)=54+212.E[X] = 5\left(\frac{1}{4}\right) + 21\left(\frac{1}{2}\right) + 0\left(\frac{1}{4}\right) = \frac{5}{4} + \frac{21}{2}.

To add, convert to a common denominator:

54+212=54+424=474.\frac{5}{4} + \frac{21}{2} = \frac{5}{4} + \frac{42}{4} = \frac{47}{4}.

Step 2. Compute E[X2]E[X^2]:

E[X2]=52(14)+212(12)+02(14)=254+4412.E[X^2] = 5^2\left(\frac{1}{4}\right) + 21^2\left(\frac{1}{2}\right) + 0^2\left(\frac{1}{4}\right) = \frac{25}{4} + \frac{441}{2}.

Convert the second term:

4412=8824,thus,E[X2]=254+8824=9074.\frac{441}{2} = \frac{882}{4}, \quad \text{thus,} \quad E[X^2] = \frac{25}{4} + \frac{882}{4} = \frac{907}{4}.

Step 3. Compute the variance Var(X)\mathrm{Var}(X):

Var(X)=E[X2](E[X])2=9074(474)2.\mathrm{Var}(X) = E[X^2] - \bigl(E[X]\bigr)^2 = \frac{907}{4} - \left(\frac{47}{4}\right)^2.

Calculate (474)2\left(\frac{47}{4}\right)^2:

(474)2=220916.\left(\frac{47}{4}\right)^2 = \frac{2209}{16}.

Write E[X2]E[X^2] with denominator 16:

9074=907×416=362816.\frac{907}{4} = \frac{907 \times 4}{16} = \frac{3628}{16}.

Thus,

Var(X)=362816220916=141916.\mathrm{Var}(X) = \frac{3628}{16} - \frac{2209}{16} = \frac{1419}{16}.

Final Answer:

The variance of his winning amount is 141916\displaystyle \frac{1419}{16} (approximately ₹88.69).


Explanation (minimal core):

  • Tossing 2 coins gives probabilities: P(2H)=14P(2H)=\frac{1}{4}, P(1H)=12P(1H)=\frac{1}{2}, P(0H)=14P(0H)=\frac{1}{4}.
  • Compute E[X]=474E[X]=\frac{47}{4}.
  • Compute E[X2]=9074E[X^2]=\frac{907}{4}.
  • Then, Var(X)=9074(474)2=141916\mathrm{Var}(X)=\frac{907}{4} - \left(\frac{47}{4}\right)^2 = \frac{1419}{16}.