Solveeit Logo

Question

Question: A player tosses 2 fair coins. He wins ₹ 5 if 2 heads appear, ₹ 21f 1 head appears a) if no heads app...

A player tosses 2 fair coins. He wins ₹ 5 if 2 heads appear, ₹ 21f 1 head appears a) if no heads appear, then the variance of his winning amount is

A

9/4

Answer

9/4

Explanation

Solution

Let the winning amounts be defined by:

X={5if 2 heads (prob. 1/4)2if 1 head (prob. 1/2)1if 0 heads (prob. 1/4)X = \begin{cases} 5 & \text{if 2 heads (prob. }1/4\text{)}\\[1mm] 2 & \text{if 1 head (prob. }1/2\text{)}\\[1mm] 1 & \text{if 0 heads (prob. }1/4\text{)} \end{cases}
  1. Expected Value:
E[X]=14(5)+12(2)+14(1)=54+1+14=5+4+14=104=2.5.E[X] = \frac{1}{4}(5) + \frac{1}{2}(2) + \frac{1}{4}(1)= \frac{5}{4} + 1 + \frac{1}{4} = \frac{5+4+1}{4} = \frac{10}{4} = 2.5.
  1. Second Moment:
E[X2]=14(25)+12(4)+14(1)=254+2+14=25+8+14=344=8.5.E[X^2] = \frac{1}{4}(25) + \frac{1}{2}(4) + \frac{1}{4}(1)= \frac{25}{4} + 2 + \frac{1}{4} = \frac{25+8+1}{4} = \frac{34}{4}=8.5.
  1. Variance:
Var(X)=E[X2](E[X])2=8.5(2.5)2=8.56.25=2.25=94.Var(X)=E[X^2]-(E[X])^2= 8.5 - (2.5)^2 = 8.5 - 6.25 = 2.25 = \frac{9}{4}.

Thus, the variance of his winning amount is 94\frac{9}{4}.