Solveeit Logo

Question

Question: A plane electromagnetic wave, has frequency of 2.0 × $10^{10}$ Hz and its energy density is 1.02 × $...

A plane electromagnetic wave, has frequency of 2.0 × 101010^{10} Hz and its energy density is 1.02 × 10810^{-8} J/m³ in vacuum. The amplitude of the magnetic field of the wave is close to

A

190 nT

B

160 nT

C

150 nT

D

180 nT

Answer

160 nT

Explanation

Solution

The average energy density (uu) of a plane electromagnetic wave is given by u=12μ0B02u = \frac{1}{2\mu_0} B_0^2, where B0B_0 is the amplitude of the magnetic field. We are given u=1.02×108u = 1.02 \times 10^{-8} J/m³. Using the given constants 14πϵ0=9×109\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 Nm²/C² and c=3×108c = 3 \times 10^8 m/s, we find μ0=4π×107\mu_0 = 4\pi \times 10^{-7} H/m. Now, we solve for B0B_0: B0=2μ0u=2×(4π×107 H/m)×(1.02×108 J/m3)B_0 = \sqrt{2\mu_0 u} = \sqrt{2 \times (4\pi \times 10^{-7} \text{ H/m}) \times (1.02 \times 10^{-8} \text{ J/m}^3)} B025.635×10151.601×107B_0 \approx \sqrt{25.635 \times 10^{-15}} \approx 1.601 \times 10^{-7} T. Converting to nanoTesla: B01.601×107×109B_0 \approx 1.601 \times 10^{-7} \times 10^9 nT =160.1= 160.1 nT. This is closest to 160 nT.