Solveeit Logo

Question

Question: A line L cuts the lines AB, AC and AD of a parallelogram ABCD at points B₁, C₁ and D₁ respectively. ...

A line L cuts the lines AB, AC and AD of a parallelogram ABCD at points B₁, C₁ and D₁ respectively. If AB1=λ1AB\overrightarrow{AB_1} = \lambda_1\overrightarrow{AB}, AD1=λ2AD\overrightarrow{AD_1} = \lambda_2\overrightarrow{AD} and AC1=λ3AC\overrightarrow{AC_1} = \lambda_3\overrightarrow{AC} then 1λ3=\frac{1}{\lambda_3} =

A

1λ1+1λ2\frac{1}{\lambda_1} + \frac{1}{\lambda_2}

B

1λ11λ2\frac{1}{\lambda_1} - \frac{1}{\lambda_2}

C

λ1+λ2-\lambda_1 + \lambda_2

D

λ1+λ2\lambda_1 + \lambda_2

Answer

1λ1+1λ2\frac{1}{\lambda_1} + \frac{1}{\lambda_2}

Explanation

Solution

Let AA be the origin, BB be represented by vector b\mathbf{b}, and DD by d\mathbf{d}. Then, in the parallelogram, C=B+D=b+dC = B + D = \mathbf{b} + \mathbf{d}.

Given:

AB1=λ1b,AD1=λ2d,AC1=λ3(b+d).\overrightarrow{AB_1} = \lambda_1 \mathbf{b}, \quad \overrightarrow{AD_1} = \lambda_2 \mathbf{d}, \quad \overrightarrow{AC_1} = \lambda_3(\mathbf{b}+\mathbf{d}).

The line LL passes through points B1B_1 and D1D_1. Its parametric equation is:

r=λ1b+t(λ2dλ1b)=λ1(1t)b+λ2td.\mathbf{r} = \lambda_1 \mathbf{b} + t\Big(\lambda_2 \mathbf{d} - \lambda_1 \mathbf{b}\Big) = \lambda_1(1-t)\mathbf{b} + \lambda_2 t\, \mathbf{d}.

Since point C1C_1 lies on LL, we have:

λ3(b+d)=λ1(1t)b+λ2td.\lambda_3 (\mathbf{b}+\mathbf{d}) = \lambda_1(1-t)\mathbf{b} + \lambda_2t\, \mathbf{d}.

Equate coefficients of b\mathbf{b} and d\mathbf{d}:

λ3=λ1(1t)andλ3=λ2t.\lambda_3 = \lambda_1(1-t) \quad \text{and} \quad \lambda_3 = \lambda_2t.

From the second equation:

t=λ3λ2.t = \frac{\lambda_3}{\lambda_2}.

Substitute into the first equation:

λ3=λ1(1λ3λ2)    λ3=λ1(λ2λ3)λ2.\lambda_3 = \lambda_1\left(1-\frac{\lambda_3}{\lambda_2}\right) \implies \lambda_3 = \frac{\lambda_1(\lambda_2-\lambda_3)}{\lambda_2}.

Multiply through by λ2\lambda_2:

λ3λ2=λ1(λ2λ3).\lambda_3\lambda_2 = \lambda_1(\lambda_2 - \lambda_3).

Rearrange:

λ3λ2+λ1λ3=λ1λ2,\lambda_3\lambda_2 + \lambda_1\lambda_3 = \lambda_1\lambda_2, λ3(λ1+λ2)=λ1λ2.\lambda_3(\lambda_1+\lambda_2)=\lambda_1\lambda_2.

Thus:

λ3=λ1λ2λ1+λ2,\lambda_3 = \frac{\lambda_1\lambda_2}{\lambda_1+\lambda_2},

and taking reciprocals,

1λ3=λ1+λ2λ1λ2=1λ1+1λ2.\frac{1}{\lambda_3}=\frac{\lambda_1+\lambda_2}{\lambda_1\lambda_2} = \frac{1}{\lambda_1}+\frac{1}{\lambda_2}.