Question
Question: A line L cuts the lines AB, AC and AD of a parallelogram ABCD at points B₁, C₁ and D₁ respectively. ...
A line L cuts the lines AB, AC and AD of a parallelogram ABCD at points B₁, C₁ and D₁ respectively. If AB1=λ1AB, AD1=λ2AD and AC1=λ3AC then λ31=

A
λ11+λ21
B
λ11−λ21
C
−λ1+λ2
D
λ1+λ2
Answer
λ11+λ21
Explanation
Solution
Let A be the origin, B be represented by vector b, and D by d. Then, in the parallelogram, C=B+D=b+d.
Given:
AB1=λ1b,AD1=λ2d,AC1=λ3(b+d).The line L passes through points B1 and D1. Its parametric equation is:
r=λ1b+t(λ2d−λ1b)=λ1(1−t)b+λ2td.Since point C1 lies on L, we have:
λ3(b+d)=λ1(1−t)b+λ2td.Equate coefficients of b and d:
λ3=λ1(1−t)andλ3=λ2t.From the second equation:
t=λ2λ3.Substitute into the first equation:
λ3=λ1(1−λ2λ3)⟹λ3=λ2λ1(λ2−λ3).Multiply through by λ2:
λ3λ2=λ1(λ2−λ3).Rearrange:
λ3λ2+λ1λ3=λ1λ2, λ3(λ1+λ2)=λ1λ2.Thus:
λ3=λ1+λ2λ1λ2,and taking reciprocals,
λ31=λ1λ2λ1+λ2=λ11+λ21.