Solveeit Logo

Question

Question: A cylinder of ice is made inside an insulated cup as shown. The bottom of cup is a plate of thermal ...

A cylinder of ice is made inside an insulated cup as shown. The bottom of cup is a plate of thermal conductivity 3.35 W/mK. It's other side is at 100°C. Density of ice = 0.9 gm/cc, density of water = 1 gm/cc. What is the downward speed v of the top surface (in mm/s). L = 3.35 x 10⁵ J/kg.

Answer

10/9 mm/s

Explanation

Solution

The rate of heat transfer through the bottom plate is calculated using Fourier's Law of conduction: Qt=kAΔTΔx\frac{Q}{t} = k A \frac{\Delta T}{\Delta x}. Given: k=3.35k = 3.35 W/mK A=πr2=π(0.1 m)2=0.01π m2A = \pi r^2 = \pi (0.1 \text{ m})^2 = 0.01\pi \text{ m}^2 (radius r=20cm/2=10cm=0.1mr = 20\text{cm}/2 = 10\text{cm} = 0.1\text{m}) ΔT=100C0C=100\Delta T = 100^\circ\text{C} - 0^\circ\text{C} = 100 K Δx=1 mm=0.001 m\Delta x = 1 \text{ mm} = 0.001 \text{ m}

Qt=(3.35 W/mK)×(0.01π m2)×100 K0.001 m=3.35×0.01π×100000 W=3350π W\frac{Q}{t} = (3.35 \text{ W/mK}) \times (0.01\pi \text{ m}^2) \times \frac{100 \text{ K}}{0.001 \text{ m}} = 3.35 \times 0.01\pi \times 100000 \text{ W} = 3350\pi \text{ W}

This heat is used to melt the ice. The rate of mass melting (dm/dtdm/dt) is given by Qt=dmdtL\frac{Q}{t} = \frac{dm}{dt} L. dmdt=3350π J/s3.35×105 J/kg=3.35×103π3.35×105 kg/s=π100 kg/s\frac{dm}{dt} = \frac{3350\pi \text{ J/s}}{3.35 \times 10^5 \text{ J/kg}} = \frac{3.35 \times 10^3 \pi}{3.35 \times 10^5} \text{ kg/s} = \frac{\pi}{100} \text{ kg/s}

The rate of volume decrease of ice (dVice/dtdV_{ice}/dt) is dVicedt=dm/dtρice\frac{dV_{ice}}{dt} = \frac{dm/dt}{\rho_{ice}}. Density of ice ρice=0.9 gm/cc=0.9×103 kg/m3\rho_{ice} = 0.9 \text{ gm/cc} = 0.9 \times 10^3 \text{ kg/m}^3. dVicedt=π/100 kg/s0.9×103 kg/m3=π90000 m3/s\frac{dV_{ice}}{dt} = \frac{\pi/100 \text{ kg/s}}{0.9 \times 10^3 \text{ kg/m}^3} = \frac{\pi}{90000} \text{ m}^3/\text{s}

The downward speed vv of the top surface is related to the rate of volume decrease by dVicedt=Av\frac{dV_{ice}}{dt} = A v. v=1AdVicedt=10.01π m2×π90000 m3/s=10.01×90000 m/s=1900 m/sv = \frac{1}{A} \frac{dV_{ice}}{dt} = \frac{1}{0.01\pi \text{ m}^2} \times \frac{\pi}{90000} \text{ m}^3/\text{s} = \frac{1}{0.01 \times 90000} \text{ m/s} = \frac{1}{900} \text{ m/s}

Converting to mm/s: v=1900 m/s×1000 mm/m=1000900 mm/s=109 mm/sv = \frac{1}{900} \text{ m/s} \times 1000 \text{ mm/m} = \frac{1000}{900} \text{ mm/s} = \frac{10}{9} \text{ mm/s}