Question
Question: $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal matrix, th...
A=0aa2bb−bc−cc is orthogonal matrix, then 36|abc| =

4
6
9
1
6
Solution
The problem states that the given matrix A is an orthogonal matrix. An orthogonal matrix A satisfies the condition AAT=I (where I is the identity matrix) and its determinant, det(A), is either +1 or -1.
Given matrix: A=0aa2bb−bc−cc
We will use the property that for an orthogonal matrix, ∣det(A)∣=1.
First, calculate the determinant of matrix A: det(A)=0⋅det(b−b−cc)−2b⋅det(aa−cc)+c⋅det(aab−b)
det(A)=0−2b(a⋅c−(−c)⋅a)+c(a⋅(−b)−b⋅a)
det(A)=−2b(ac+ac)+c(−ab−ab)
det(A)=−2b(2ac)+c(−2ab)
det(A)=−4abc−2abc
det(A)=−6abc
Since A is an orthogonal matrix, we know that ∣det(A)∣=1. Therefore, ∣−6abc∣=1. Using the property ∣xy∣=∣x∣∣y∣, we get: ∣−6∣⋅∣abc∣=1
6⋅∣abc∣=1
∣abc∣=61
The question asks for the value of 36∣abc∣.
36∣abc∣=36⋅(61)
36∣abc∣=6