Solveeit Logo

Question

Question: $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal matrix, th...

A=[02bcabcabc]A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix} is orthogonal matrix, then 36|abc| =

A

4

B

6

C

9

D

1

Answer

6

Explanation

Solution

The problem states that the given matrix A is an orthogonal matrix. An orthogonal matrix A satisfies the condition AAT=IA A^T = I (where I is the identity matrix) and its determinant, det(A)\det(A), is either +1 or -1.

Given matrix: A=[02bcabcabc]A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}

We will use the property that for an orthogonal matrix, det(A)=1|\det(A)| = 1.

First, calculate the determinant of matrix A: det(A)=0det(bcbc)2bdet(acac)+cdet(abab)\det(A) = 0 \cdot \det \begin{pmatrix} b & -c \\ -b & c \end{pmatrix} - 2b \cdot \det \begin{pmatrix} a & -c \\ a & c \end{pmatrix} + c \cdot \det \begin{pmatrix} a & b \\ a & -b \end{pmatrix}

det(A)=02b(ac(c)a)+c(a(b)ba)\det(A) = 0 - 2b(a \cdot c - (-c) \cdot a) + c(a \cdot (-b) - b \cdot a)

det(A)=2b(ac+ac)+c(abab)\det(A) = -2b(ac + ac) + c(-ab - ab)

det(A)=2b(2ac)+c(2ab)\det(A) = -2b(2ac) + c(-2ab)

det(A)=4abc2abc\det(A) = -4abc - 2abc

det(A)=6abc\det(A) = -6abc

Since A is an orthogonal matrix, we know that det(A)=1|\det(A)| = 1. Therefore, 6abc=1|-6abc| = 1. Using the property xy=xy|xy| = |x||y|, we get: 6abc=1|-6| \cdot |abc| = 1

6abc=16 \cdot |abc| = 1

abc=16|abc| = \frac{1}{6}

The question asks for the value of 36abc36|abc|.

36abc=36(16)36|abc| = 36 \cdot \left(\frac{1}{6}\right)

36abc=636|abc| = 6