Solveeit Logo

Question

Question: 5. (a) $1 - \log 5 = \frac{1}{3} (\log\frac{1}{2} + \log x + \frac{1}{3} \log 5)$....

  1. (a) 1log5=13(log12+logx+13log5)1 - \log 5 = \frac{1}{3} (\log\frac{1}{2} + \log x + \frac{1}{3} \log 5).
Answer

The value of xx is 1651/3\frac{16}{5^{1/3}} or 1653\frac{16}{\sqrt[3]{5}}. This can also be written as 162535\frac{16 \sqrt[3]{25}}{5}.

Explanation

Solution

The equation is simplified by using logarithm properties. LHS: 1log5=log10log5=log(105)=log21 - \log 5 = \log 10 - \log 5 = \log\left(\frac{10}{5}\right) = \log 2. RHS: 13(log12+logx+13log5)\frac{1}{3} (\log\frac{1}{2} + \log x + \frac{1}{3} \log 5). Using nloga=log(an)n \log a = \log(a^n): 13log5=log(51/3)\frac{1}{3} \log 5 = \log(5^{1/3}). RHS = 13(log12+logx+log(51/3))\frac{1}{3} (\log\frac{1}{2} + \log x + \log(5^{1/3})). Using loga+logb+logc=log(abc)\log a + \log b + \log c = \log(abc): RHS = 13log(12x51/3)=13log(x51/32)\frac{1}{3} \log\left(\frac{1}{2} \cdot x \cdot 5^{1/3}\right) = \frac{1}{3} \log\left(\frac{x \cdot 5^{1/3}}{2}\right). Equating LHS and RHS: log2=13log(x51/32)\log 2 = \frac{1}{3} \log\left(\frac{x \cdot 5^{1/3}}{2}\right). Multiply by 3: 3log2=log(x51/32)3 \log 2 = \log\left(\frac{x \cdot 5^{1/3}}{2}\right). Using nloga=log(an)n \log a = \log(a^n): log23=log(x51/32)\log 2^3 = \log\left(\frac{x \cdot 5^{1/3}}{2}\right). log8=log(x51/32)\log 8 = \log\left(\frac{x \cdot 5^{1/3}}{2}\right). Since logA=logB    A=B\log A = \log B \implies A = B: 8=x51/328 = \frac{x \cdot 5^{1/3}}{2}. Multiply by 2: 16=x51/316 = x \cdot 5^{1/3}. Solve for xx: x=1651/3x = \frac{16}{5^{1/3}}. This can also be written as x=1653x = \frac{16}{\sqrt[3]{5}}. To rationalize the denominator, multiply by 52/3/52/35^{2/3}/5^{2/3}: x=1652/351/352/3=1652/35=162535x = \frac{16 \cdot 5^{2/3}}{5^{1/3} \cdot 5^{2/3}} = \frac{16 \cdot 5^{2/3}}{5} = \frac{16 \sqrt[3]{25}}{5}.