Solveeit Logo

Question

Question: \({{5}}{{.1g}}\) of \({{N}}{{{H}}_4}{{SH}}\) is introduced in \(3.0{{L}}\) evacuated flask at \({{32...

5.1g{{5}}{{.1g}} of NH4SH{{N}}{{{H}}_4}{{SH}} is introduced in 3.0L3.0{{L}} evacuated flask at 327C{{32}}{{{7}}^ \circ }{{C}}. 30%30\% of the solid NH4SH{{N}}{{{H}}_4}{{SH}} is decomposed to NH3{{N}}{{{H}}_3} and H2S{{{H}}_2}{{S}} as gases. The Kp{{{K}}_{{p}}} of the reaction at 327C{{32}}{{{7}}^ \circ }{{C}} is:
(R=0.082atm.mol1.K1,{{R = 0}}{{.082atm}}{{.mo}}{{{l}}^{ - 1}}.{{{K}}^{ - 1}}, molar mass of S=32g.mol1,{{S = 32g}}{{.mo}}{{{l}}^{ - 1}}, molar mass of N=14g.mol1{{N = 14g}}{{.mo}}{{{l}}^{ - 1}} ).
A. 0.242×104atm20.242 \times {10^{ - 4}}{{at}}{{{m}}^2}
B. 0.242atm20.242{{at}}{{{m}}^2}
C. 4.9×103atm24.9 \times {10^{ - 3}}{{at}}{{{m}}^2}
D. 1×104atm21 \times {10^{ - 4}}{{at}}{{{m}}^2}

Explanation

Solution

The forward and reverse reactions proceed at the same rate at equilibrium. Also, when equilibrium is achieved, both the reactants and products remain constant. Equilibrium constant expression is applicable only when the reactant concentrations and product concentrations are constant at equilibrium.

Complete step by step solution:
It is given that α=30%=0.3\alpha = 30\% = 0.3
Mass of NH4SH{{N}}{{{H}}_4}{{SH}}, mNH4SH=5.1g{{{m}}_{{{N}}{{{H}}_4}{{SH}}}} = 5.1{{g}}
Volume, V=3.0L{{V = }}3.0{{L}}
Temperature, T=327C=327+273=600K{{T = 32}}{{{7}}^ \circ }{{C = 327 + 273 = 600K}}
Molar mass of S{{S}}, MS=32g.mol1{{{M}}_{{S}}} = 32{{g}}.{{mo}}{{{l}}^{ - 1}}, molar mass of N,MN=14g.mol1{{N,}}{{{M}}_{{N}}}{{ = 14g}}{{.mo}}{{{l}}^{ - 1}}.
Molecular mass of NH4SH{{N}}{{{H}}_4}{{SH}}, MNH4SH=14+(5×1)+32=51g.mol1{{{M}}_{{{N}}{{{H}}_4}{{SH}}}} = 14 + \left( {5 \times 1} \right) + 32 = 51{{g}}.{{mo}}{{{l}}^{ - 1}}
Now consider an equilibrium reaction,
aAbB+cC{{aA}} \rightleftharpoons {{bB}} + {{cC}}
The equilibrium constant, Kc=[B]b[C]c[A]a{{{K}}_{{c}}} = \dfrac{{{{\left[ {{B}} \right]}^{{b}}}{{\left[ {{C}} \right]}^{{c}}}}}{{{{\left[ {{A}} \right]}^{{a}}}}}, where [A],[B],[C]\left[ {{A}} \right],\left[ {{B}} \right],\left[ {{C}} \right] are the concentrations of A,B,C{{A,B,C}} and a,b,c{{a,b,c}} are the stoichiometric coefficients.
Also we know that the ideal gas equation is PV=nRT{{PV}} = {{nRT}}, where P{{P}} is the pressure, V{{V}} is the volume, n{{n}} is the number of moles of gas, R{{R}} is the gas constant and T{{T}} is the temperature.
P=nVRTP=CRT{{P}} = \dfrac{{{n}}}{{{V}}}{{RT}} \Leftrightarrow {{P}} = {{CRT}}, where C{{C}} is the concentration expressed in molL1{{mol}}{{{L}}^{ - 1}} and R=0.082LatmK1mol1{{R = 0}}{{.082Latm}}{{{K}}^{ - 1}}{{mo}}{{{l}}^{ - 1}}
Now let’s write the reaction at equilibrium.
NH4SHNH3+H2S{{N}}{{{H}}_4}{{SH}} \rightleftharpoons {{N}}{{{H}}_3} + {{{H}}_2}{{S}}
Molecular mass of NH4SH{{N}}{{{H}}_4}{{SH}}, MNH4SH=51g.mol1{{{M}}_{{{N}}{{{H}}_{{4}}}{{SH}}}} = 51{{g}}.{{mo}}{{{l}}^{ - 1}}
Thus the number of moles of NH4SH{{N}}{{{H}}_4}{{SH}}, nNH4SH=5.151=0.1mol{{{n}}_{{{N}}{{{H}}_4}{{SH}}}} = \dfrac{{5.1}}{{51}} = 0.1{{mol}}
NH4SHNH3+H2S{{N}}{{{H}}_4}{{SH}} \rightleftharpoons {{N}}{{{H}}_3} + {{{H}}_2}{{S}}

| NH4SH{{N}}{{{H}}_4}{{SH}}| NH3{{N}}{{{H}}_3} | H2S{{{H}}_2}{{S}}
---|---|---|---
Initial:| 0.10.1| 00 | 00
After time t| 0.1(1α)0.1\left( { - 1 - \alpha } \right)| 0.1α0.1\alpha | 0.1α0.1\alpha

Thus the number of moles at equilibrium can be represented as:

0.1(10.3)0.1\left( { - 1 - 0.3} \right)0.1×0.30.1 \times 0.30.1×0.30.1 \times 0.3
0.070.070.030.030.030.03

Thus ideal gas equation will be:
P×3.0L=(0.03+0.03)0.082×600{{P}} \times {{3}}{{.0L}} = \left( {0.03 + 0.03} \right){{0}}{{.082}} \times {{600}}
On simplification, we get
P=2.9523=0.984atm{{P = }}\dfrac{{2.952}}{3} = 0.984{{atm}}
Thus PNH3=PH2S=P2=0.9842=0.492atm{{{P}}_{{{N}}{{{H}}_3}}} = {{{P}}_{{{{H}}_2}{{S}}}} = \dfrac{{{P}}}{2} = \dfrac{{0.984}}{2} = 0.492{{atm}}
Equilibrium constant with respect to the partial pressure is represented by Kp{{{K}}_{{p}}}.
Thus Kp=PNH3×PH2SKp=0.492×0.492=0.242atm2{{{K}}_{{p}}} = {{{P}}_{{{N}}{{{H}}_3}}} \times {{{P}}_{{{{H}}_2}{{S}}}} \rightleftharpoons {{{K}}_{{p}}} = 0.492 \times 0.492 = 0.242{{at}}{{{m}}^2}
Thus the equilibrium constant Kp=0.242atm2{{{K}}_{{p}}} = 0.242{{at}}{{{m}}^2}

Hence, the correct option is B.

Additional information:
Equilibrium constant does not depend on the initial concentrations of reactants and products. It is also temperature dependent. If the equilibrium constant has a very large value, then the reaction is approaching completion.

Note: Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant in the forward reaction. If it is greater than one, then it is product favored. If it is less than one, then it is reactants favored. Here, it is less than one. So it is reactant favored.