Solveeit Logo

Question

Chemistry Question on Equilibrium

5.1g  NH4SH{5.1g \; NH_4SH } is introduced in 3.0L3.0\, L evacuated flask at 327C{327^{\circ}C}. 30% of the solid NH4SH{NH4SH} decomposed to NH3{NH_3} and H2S{H2S} as gases. The Kp of the reaction at 327C{327^{\circ}C} is {(R = 0.082 \; L \; atm \; mol^{-1} K^{-1}}}, Molar mass of S=32  g  mol/01{S = 32 \; g \; mol/^{01}}, molar mass of N=14gmol1{N = 14g \, mol^{-1}})

A

1×104  atm21 \times 10^{-4} \; atm^2

B

4.9×103  atm24.9 \times 10^{-3} \; atm^2

C

0.242  atm20.242 \; atm^2

D

0.242×104  atm20.242 \times 10^{-4} \; atm^2

Answer

0.242  atm20.242 \; atm^2

Explanation

Solution

NHSH(s)<=>NH(g)H2S(g){NH SH(s) <=> NH (g) H_2S(g)}
n=5.151=.1mole00 .1(1α).1α.1α\begin{matrix}n = \frac{5.1}{51} =.1 \text{mole}&0&0\\\ .1\left(-1-\alpha\right)&.1\alpha&.1\alpha\end{matrix}
α=30%=.3\alpha=30\% =.3
so number of moles at equilibrium
.1(13).1×.3.1×.3 =.07=.03=.03\begin{matrix}&.1\left(1-3\right)&.1\times.3&.1\times.3\\\ =&.07&=.03&=.03\end{matrix}
Now use PV = nRT at equilibrium
Ptotal×3lit=(.03+.03)×.082×600P_{\text{total}}\times3 \, \text{lit} =\left(.03 +.03\right) \times.082 \times600
Ptotal=.984atmP_{\text{total}} = .984 \text{atm}
At equilibrium
PNH3=PH2S=Ptotal2=.492P_{NH_3} = P_{H_2S} = \frac{P_{\text{total}}}{2} = .492
kP=PNH3.PH2S=(.492)(.492)k_{P} =P_{NH_3} . P_{H_2S} = \left(.492\right)\left(.492\right)
kp=.242atm2k_{p} = .242 \text{atm}^{2}