Solveeit Logo

Question

Question: A long straight wire (radius = 3.0 mm) carries a constant current distributed uniformly over a cross...

A long straight wire (radius = 3.0 mm) carries a constant current distributed uniformly over a cross section perpendicular to the axis of the wire. If the current density is 100 A/m². The magnitudes of the magnetic field at (a) 2.0 mm from the axis of the wire and (b) 4.0 mm from the axis of the wire is :-

A

2πx10⁻⁸T, 9π2\frac{9\pi}{2}x10⁻⁸T

B

4π × 10⁻⁸ T, π2\frac{\pi}{2}x10⁻⁸T

C

4π×10⁻⁸T, 9π2\frac{9\pi}{2}×10⁻⁸T

D

π×10⁻⁸ T, 9π2\frac{9\pi}{2}×10⁻⁸ T

Answer

(3)

Explanation

Solution

To determine the magnetic field at points inside and outside a long straight wire with a uniform current density, we use Ampere's Law.

Given:

  • Radius of the wire, R=3.0 mm=3.0×103 mR = 3.0 \text{ mm} = 3.0 \times 10^{-3} \text{ m}

  • Current density, J=100 A/m2J = 100 \text{ A/m}^2

  • Permeability of free space, μ0=4π×107 Tm/A\mu_0 = 4\pi \times 10^{-7} \text{ T}\cdot\text{m/A}

Formulas for Magnetic Field (BB) due to a Long Straight Wire with Uniform Current Density (JJ):

  1. Inside the wire (r<Rr < R):
    For an Amperian loop of radius rr inside the wire, the enclosed current IenclosedI_{enclosed} is the current density times the area of the loop:
    Ienclosed=J×(πr2)I_{enclosed} = J \times (\pi r^2)
    Applying Ampere's Law (Bdl=μ0Ienclosed\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}):
    Binside(2πr)=μ0(Jπr2)B_{inside} (2\pi r) = \mu_0 (J \pi r^2)
    Binside=μ0Jr2B_{inside} = \frac{\mu_0 J r}{2}

  2. Outside the wire (r>Rr > R):
    For an Amperian loop of radius rr outside the wire, the enclosed current IenclosedI_{enclosed} is the total current in the wire, ItotalI_{total}.
    Itotal=J×(πR2)I_{total} = J \times (\pi R^2)
    Applying Ampere's Law:
    Boutside(2πr)=μ0ItotalB_{outside} (2\pi r) = \mu_0 I_{total}
    Boutside(2πr)=μ0(JπR2)B_{outside} (2\pi r) = \mu_0 (J \pi R^2)
    Boutside=μ0JR22rB_{outside} = \frac{\mu_0 J R^2}{2r}

Calculations:

(a) Magnetic field at ra=2.0 mmr_a = 2.0 \text{ mm} from the axis of the wire:
Since ra=2.0 mm<R=3.0 mmr_a = 2.0 \text{ mm} < R = 3.0 \text{ mm}, this point is inside the wire.
Using the formula for BinsideB_{inside}:
Ba=μ0Jra2B_a = \frac{\mu_0 J r_a}{2}
Ba=(4π×107 Tm/A)×(100 A/m2)×(2.0×103 m)2B_a = \frac{(4\pi \times 10^{-7} \text{ T}\cdot\text{m/A}) \times (100 \text{ A/m}^2) \times (2.0 \times 10^{-3} \text{ m})}{2}
Ba=4π×107×102×2×1032 TB_a = \frac{4\pi \times 10^{-7} \times 10^2 \times 2 \times 10^{-3}}{2} \text{ T}
Ba=4π×107×101 TB_a = 4\pi \times 10^{-7} \times 10^{-1} \text{ T}
Ba=4π×108 TB_a = 4\pi \times 10^{-8} \text{ T}

(b) Magnetic field at rb=4.0 mmr_b = 4.0 \text{ mm} from the axis of the wire:
Since rb=4.0 mm>R=3.0 mmr_b = 4.0 \text{ mm} > R = 3.0 \text{ mm}, this point is outside the wire.
Using the formula for BoutsideB_{outside}:
Bb=μ0JR22rbB_b = \frac{\mu_0 J R^2}{2r_b}
Bb=(4π×107 Tm/A)×(100 A/m2)×(3.0×103 m)22×(4.0×103 m)B_b = \frac{(4\pi \times 10^{-7} \text{ T}\cdot\text{m/A}) \times (100 \text{ A/m}^2) \times (3.0 \times 10^{-3} \text{ m})^2}{2 \times (4.0 \times 10^{-3} \text{ m})}
Bb=4π×107×102×(9.0×106)8.0×103 TB_b = \frac{4\pi \times 10^{-7} \times 10^2 \times (9.0 \times 10^{-6})}{8.0 \times 10^{-3}} \text{ T}
Bb=36π×10118×103 TB_b = \frac{36\pi \times 10^{-11}}{8 \times 10^{-3}} \text{ T}
Bb=36π8×108 TB_b = \frac{36\pi}{8} \times 10^{-8} \text{ T}
Bb=9π2×108 TB_b = \frac{9\pi}{2} \times 10^{-8} \text{ T}

Comparing these results with the given options, we find that:
(a) Ba=4π×108 TB_a = 4\pi \times 10^{-8} \text{ T}
(b) Bb=9π2×108 TB_b = \frac{9\pi}{2} \times 10^{-8} \text{ T}

These values match option (3).

The final answer is (3)\boxed{\text{(3)}}

Solution Explanation:
The problem requires calculating the magnetic field at two points, one inside and one outside a long straight wire with uniform current density. Ampere's Law is applied for both cases.

  1. Inside the wire (r<Rr < R): The magnetic field is directly proportional to the distance rr from the axis, given by B=μ0Jr2B = \frac{\mu_0 J r}{2}.

  2. Outside the wire (r>Rr > R): The magnetic field is inversely proportional to the distance rr from the axis, and proportional to the square of the wire's radius, given by B=μ0JR22rB = \frac{\mu_0 J R^2}{2r}.

Substitute the given values for current density, wire radius, and distances to find the magnetic field magnitudes at the specified points.