Solveeit Logo

Question

Question: \(4\tan^{- 1}\frac{1}{5} - \tan^{- 1}\frac{1}{239}\) is equal to...

4tan115tan112394\tan^{- 1}\frac{1}{5} - \tan^{- 1}\frac{1}{239} is equal to

A

π\pi

B

π2\frac{\pi}{2}

C

π3\frac{\pi}{3}

D

π4\frac{\pi}{4}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Since, 2tan1x=tan12x1x22\tan^{- 1}x = \tan^{- 1}\frac{2x}{1 - x^{2}}

4tan115=2[2tan115]=2tan1251125=2tan11024=tan120241100576=tan1120119\therefore 4\tan^{- 1}\frac{1}{5} = 2\left\lbrack 2\tan^{- 1}\frac{1}{5} \right\rbrack = 2\tan^{- 1}\frac{\frac{2}{5}}{1 - \frac{1}{25}} = 2\tan^{- 1}\frac{10}{24} = \tan^{- 1}\frac{\frac{20}{24}}{1 - \frac{100}{576}} = \tan^{- 1}\frac{120}{119}

So,4tan115tan11239=tan1120119tan112394\tan^{- 1}\frac{1}{5} - \tan^{- 1}\frac{1}{239} = \tan^{- 1}\frac{120}{119} - \tan^{- 1}\frac{1}{239} =tan112011912391+120119.1239=tan1(120×239)119(119×239)+120=tan11=π4= \tan^{- 1}\frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119}.\frac{1}{239}} = \tan^{- 1}\frac{(120 \times 239) - 119}{(119 \times 239) + 120} = \tan^{- 1}1 = \frac{\pi}{4}