Solveeit Logo

Question

Question: $(4\cot^{2}9^{\circ}-1)(4\cot^{2}27^{\circ}-1)(4\cot^{2}81^{\circ}-1)(4\cot^{2}243^{\circ}-1)$...

(4cot291)(4cot2271)(4cot2811)(4cot22431)(4\cot^{2}9^{\circ}-1)(4\cot^{2}27^{\circ}-1)(4\cot^{2}81^{\circ}-1)(4\cot^{2}243^{\circ}-1)

Answer

The problem seems to have a typo. Assuming the question is (4cos291)(4cos2271)(4cos2811)(4cos22431)(4\cos^{2}9^{\circ}-1)(4\cos^{2}27^{\circ}-1)(4\cos^{2}81^{\circ}-1)(4\cos^{2}243^{\circ}-1), the answer is 1.

Explanation

Solution

The problem asks for the value of the expression (4cot291)(4cot2271)(4cot2811)(4cot22431)(4\cot^{2}9^{\circ}-1)(4\cot^{2}27^{\circ}-1)(4\cot^{2}81^{\circ}-1)(4\cot^{2}243^{\circ}-1).

Observation and Assumption:

The angles in the product are 9,27,81,2439^\circ, 27^\circ, 81^\circ, 243^\circ, which follow a geometric progression with a common ratio of 3 (9,3×9,32×9,33×99^\circ, 3 \times 9^\circ, 3^2 \times 9^\circ, 3^3 \times 9^\circ). This pattern strongly suggests a telescoping product involving a trigonometric identity related to 3θ3\theta.

A common identity used for such problems is 4cos2θ1=sin3θsinθ4\cos^2\theta - 1 = \frac{\sin 3\theta}{\sin \theta}.

If the terms were of the form (4cos2θ1)(4\cos^2\theta - 1), the problem would be a standard one leading to a simple integer answer.

The presence of cot2θ\cot^2\theta instead of cos2θ\cos^2\theta makes the problem significantly more complex and does not typically lead to a simple integer answer using standard identities. Given the context of competitive exams, it is highly probable that there is a typo in the question and that cot2θ\cot^2\theta should be cos2θ\cos^2\theta. We will proceed with this assumption, as is common practice in such scenarios.

Core Identity:

We use the trigonometric identity: 4cos2θ1=sin3θsinθ4\cos^2\theta - 1 = \frac{\sin 3\theta}{\sin \theta}

Proof of the Identity:

We know the triple angle formula for sine: sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin\theta - 4\sin^3\theta. Dividing both sides by sinθ\sin\theta (assuming sinθ0\sin\theta \neq 0): sin3θsinθ=3sinθ4sin3θsinθ=34sin2θ\frac{\sin 3\theta}{\sin \theta} = \frac{3\sin\theta - 4\sin^3\theta}{\sin\theta} = 3 - 4\sin^2\theta Using the Pythagorean identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta: 34(1cos2θ)=34+4cos2θ=4cos2θ13 - 4(1 - \cos^2\theta) = 3 - 4 + 4\cos^2\theta = 4\cos^2\theta - 1 Thus, the identity 4cos2θ1=sin3θsinθ4\cos^2\theta - 1 = \frac{\sin 3\theta}{\sin \theta} is verified.

Applying the Identity to Each Term:

Now, we apply this identity to each term in the product, assuming the corrected form (4cos2θ1)(4\cos^2\theta - 1):

  1. For θ=9\theta = 9^\circ: 4cos291=sin(3×9)sin9=sin27sin94\cos^2 9^\circ - 1 = \frac{\sin(3 \times 9^\circ)}{\sin 9^\circ} = \frac{\sin 27^\circ}{\sin 9^\circ}

  2. For θ=27\theta = 27^\circ: 4cos2271=sin(3×27)sin27=sin81sin274\cos^2 27^\circ - 1 = \frac{\sin(3 \times 27^\circ)}{\sin 27^\circ} = \frac{\sin 81^\circ}{\sin 27^\circ}

  3. For θ=81\theta = 81^\circ: 4cos2811=sin(3×81)sin81=sin243sin814\cos^2 81^\circ - 1 = \frac{\sin(3 \times 81^\circ)}{\sin 81^\circ} = \frac{\sin 243^\circ}{\sin 81^\circ}

  4. For θ=243\theta = 243^\circ: 4cos22431=sin(3×243)sin243=sin729sin2434\cos^2 243^\circ - 1 = \frac{\sin(3 \times 243^\circ)}{\sin 243^\circ} = \frac{\sin 729^\circ}{\sin 243^\circ}

Multiplying the Terms (Telescoping Product):

Let P be the product of these terms: P=(sin27sin9)×(sin81sin27)×(sin243sin81)×(sin729sin243)P = \left(\frac{\sin 27^\circ}{\sin 9^\circ}\right) \times \left(\frac{\sin 81^\circ}{\sin 27^\circ}\right) \times \left(\frac{\sin 243^\circ}{\sin 81^\circ}\right) \times \left(\frac{\sin 729^\circ}{\sin 243^\circ}\right) This is a telescoping product, where the numerator of each term cancels with the denominator of the subsequent term: P=sin729sin9P = \frac{\sin 729^\circ}{\sin 9^\circ}

Simplifying the Result:

We need to simplify sin729\sin 729^\circ. We know that sin(n360+θ)=sinθ\sin(n \cdot 360^\circ + \theta) = \sin\theta for any integer nn. We can write 729729^\circ as 2×360+9=720+92 \times 360^\circ + 9^\circ = 720^\circ + 9^\circ. So, sin729=sin(720+9)=sin9\sin 729^\circ = \sin(720^\circ + 9^\circ) = \sin 9^\circ.

Substituting this back into the expression for P: P=sin9sin9=1P = \frac{\sin 9^\circ}{\sin 9^\circ} = 1

The final answer is 1.