Solveeit Logo

Question

Question: 4a cosec a....

4a cosec a.

A

If one end of focal chord of parabola y2=8xy^2 = 8x is (8,8)(8,8), find other end.

B

If one end of focal chord of parabola y2=2xy^2 = -2x is (2,2)(-2, 2), find other end.

C

If one end of focal chord of parabola x2=4yx^2 = 4y is (4,4)(-4,4), find other end.

D

If one end of focal chord of parabola (y1)2=48x(y - 1)^2 = 4-8x is (4,5)(-4,-5), find other end.

Answer

The question is a multipart question. Please refer to the detailed breakdown for each part.

Explanation

Solution

The problem asks to find the other end of a focal chord for four different parabolas, given one endpoint of the chord. The general approach involves identifying the type of parabola, its focus, and applying specific properties of focal chords.

For parabolas of the form y2=4axy^2 = 4ax, the focus is at (a,0)(a, 0) and if (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) are the endpoints of a focal chord, then x1x2=a2x_1 x_2 = a^2. Alternatively, using the parametric form (at2,2at)(at^2, 2at), the condition for a focal chord is t1t2=1t_1 t_2 = -1.

For parabolas of the form x2=4ayx^2 = 4ay, the focus is at (0,a)(0, a) and if (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) are the endpoints of a focal chord, then y1y2=a2y_1 y_2 = a^2. The parametric form is (2at,at2)(2at, at^2), and the condition for a focal chord remains t1t2=1t_1 t_2 = -1.

For translated parabolas, the coordinate system can be shifted, or the general parametric form for translated parabolas can be used.

Detailed breakdown for each part:

(i) Parabola y2=8xy^2 = 8x, one end is (8,8)(8,8).

  • Equation: y2=8x    y2=4(2)xy^2 = 8x \implies y^2 = 4(2)x. So, a=2a=2.
  • Given end (x1,y1)=(8,8)(x_1, y_1) = (8,8).
  • Using x1x2=a2x_1 x_2 = a^2: 8x2=22    8x2=4    x2=128 \cdot x_2 = 2^2 \implies 8x_2 = 4 \implies x_2 = \frac{1}{2}.
  • The point (x2,y2)(x_2, y_2) lies on the parabola: y22=8x2=8(12)=4    y2=±2y_2^2 = 8x_2 = 8(\frac{1}{2}) = 4 \implies y_2 = \pm 2.
  • Using parametric form: a=2a=2, points are (2t2,4t)(2t^2, 4t). For (8,8)(8,8), 4t1=8    t1=24t_1=8 \implies t_1=2.
  • For a focal chord, t1t2=1    2t2=1    t2=12t_1 t_2 = -1 \implies 2t_2 = -1 \implies t_2 = -\frac{1}{2}.
  • Other end: (2t22,4t2)=(2(12)2,4(12))=(2(14),2)=(12,2)(2t_2^2, 4t_2) = (2(-\frac{1}{2})^2, 4(-\frac{1}{2})) = (2(\frac{1}{4}), -2) = (\frac{1}{2}, -2).

(ii) Parabola y2=2xy^2 = -2x, one end is (2,2)(-2, 2).

  • Equation: y2=2x    y2=4(12)xy^2 = -2x \implies y^2 = 4(-\frac{1}{2})x. So, a=12a=-\frac{1}{2}.
  • Given end (x1,y1)=(2,2)(x_1, y_1) = (-2, 2).
  • Using x1x2=a2x_1 x_2 = a^2: (2)x2=(12)2    2x2=14    x2=18(-2) \cdot x_2 = (-\frac{1}{2})^2 \implies -2x_2 = \frac{1}{4} \implies x_2 = -\frac{1}{8}.
  • The point (x2,y2)(x_2, y_2) lies on the parabola: y22=2x2=2(18)=14    y2=±12y_2^2 = -2x_2 = -2(-\frac{1}{8}) = \frac{1}{4} \implies y_2 = \pm \frac{1}{2}.
  • Using parametric form: a=12a=-\frac{1}{2}, points are (12t2,t)(-\frac{1}{2}t^2, -t). For (2,2)(-2,2), t1=2    t1=2-t_1=2 \implies t_1=-2.
  • For a focal chord, t1t2=1    2t2=1    t2=12t_1 t_2 = -1 \implies -2t_2 = -1 \implies t_2 = \frac{1}{2}.
  • Other end: (12t22,t2)=(12(12)2,12)=(12(14),12)=(18,12)(-\frac{1}{2}t_2^2, -t_2) = (-\frac{1}{2}(\frac{1}{2})^2, -\frac{1}{2}) = (-\frac{1}{2}(\frac{1}{4}), -\frac{1}{2}) = (-\frac{1}{8}, -\frac{1}{2}).

(iii) Parabola x2=4yx^2 = 4y, one end is (4,4)(-4,4).

  • Equation: x2=4y    x2=4(1)yx^2 = 4y \implies x^2 = 4(1)y. So, a=1a=1.
  • Given end (x1,y1)=(4,4)(x_1, y_1) = (-4, 4).
  • Using y1y2=a2y_1 y_2 = a^2: 4y2=12    4y2=1    y2=144 \cdot y_2 = 1^2 \implies 4y_2 = 1 \implies y_2 = \frac{1}{4}.
  • The point (x2,y2)(x_2, y_2) lies on the parabola: x22=4y2=4(14)=1    x2=±1x_2^2 = 4y_2 = 4(\frac{1}{4}) = 1 \implies x_2 = \pm 1.
  • Using parametric form: a=1a=1, points are (2t,t2)(2t, t^2). For (4,4)(-4,4), 2t1=4    t1=22t_1=-4 \implies t_1=-2.
  • For a focal chord, t1t2=1    2t2=1    t2=12t_1 t_2 = -1 \implies -2t_2 = -1 \implies t_2 = \frac{1}{2}.
  • Other end: (2t2,t22)=(2(12),(12)2)=(1,14)(2t_2, t_2^2) = (2(\frac{1}{2}), (\frac{1}{2})^2) = (1, \frac{1}{4}).

(iv) Parabola (y1)2=48x(y - 1)^2 = 4-8x, one end is (4,5)(-4,-5).

  • Equation: (y1)2=8(x12)(y - 1)^2 = -8(x - \frac{1}{2}). This is a translated parabola (yk)2=4a(xh)(y-k)^2 = 4a(x-h) with h=12h=\frac{1}{2}, k=1k=1, and 4a=8    a=24a=-8 \implies a=-2.
  • The parametric form for this translated parabola is (h+at2,k+2at)=(122t2,14t)(h + at^2, k + 2at) = (\frac{1}{2} - 2t^2, 1 - 4t).
  • Given end (x1,y1)=(4,5)(x_1, y_1) = (-4, -5).
  • Equating with parametric form:
    • y1=14t1=5    4t1=6    t1=32y_1 = 1 - 4t_1 = -5 \implies -4t_1 = -6 \implies t_1 = \frac{3}{2}.
    • Check with x-coordinate: x1=122t12=122(32)2=122(94)=1292=82=4x_1 = \frac{1}{2} - 2t_1^2 = \frac{1}{2} - 2(\frac{3}{2})^2 = \frac{1}{2} - 2(\frac{9}{4}) = \frac{1}{2} - \frac{9}{2} = -\frac{8}{2} = -4. This matches.
  • For a focal chord, t1t2=1    32t2=1    t2=23t_1 t_2 = -1 \implies \frac{3}{2} t_2 = -1 \implies t_2 = -\frac{2}{3}.
  • Other end: (122t22,14t2)=(122(23)2,14(23))=(122(49),1+83)=(1289,3+83)=(91618,113)=(718,113)(\frac{1}{2} - 2t_2^2, 1 - 4t_2) = (\frac{1}{2} - 2(-\frac{2}{3})^2, 1 - 4(-\frac{2}{3})) = (\frac{1}{2} - 2(\frac{4}{9}), 1 + \frac{8}{3}) = (\frac{1}{2} - \frac{8}{9}, \frac{3+8}{3}) = (\frac{9-16}{18}, \frac{11}{3}) = (-\frac{7}{18}, \frac{11}{3}).