Question
Question: 4a cosec a....
4a cosec a.

If one end of focal chord of parabola y2=8x is (8,8), find other end.
If one end of focal chord of parabola y2=−2x is (−2,2), find other end.
If one end of focal chord of parabola x2=4y is (−4,4), find other end.
If one end of focal chord of parabola (y−1)2=4−8x is (−4,−5), find other end.
The question is a multipart question. Please refer to the detailed breakdown for each part.
Solution
The problem asks to find the other end of a focal chord for four different parabolas, given one endpoint of the chord. The general approach involves identifying the type of parabola, its focus, and applying specific properties of focal chords.
For parabolas of the form y2=4ax, the focus is at (a,0) and if (x1,y1) and (x2,y2) are the endpoints of a focal chord, then x1x2=a2. Alternatively, using the parametric form (at2,2at), the condition for a focal chord is t1t2=−1.
For parabolas of the form x2=4ay, the focus is at (0,a) and if (x1,y1) and (x2,y2) are the endpoints of a focal chord, then y1y2=a2. The parametric form is (2at,at2), and the condition for a focal chord remains t1t2=−1.
For translated parabolas, the coordinate system can be shifted, or the general parametric form for translated parabolas can be used.
Detailed breakdown for each part:
(i) Parabola y2=8x, one end is (8,8).
- Equation: y2=8x⟹y2=4(2)x. So, a=2.
- Given end (x1,y1)=(8,8).
- Using x1x2=a2: 8⋅x2=22⟹8x2=4⟹x2=21.
- The point (x2,y2) lies on the parabola: y22=8x2=8(21)=4⟹y2=±2.
- Using parametric form: a=2, points are (2t2,4t). For (8,8), 4t1=8⟹t1=2.
- For a focal chord, t1t2=−1⟹2t2=−1⟹t2=−21.
- Other end: (2t22,4t2)=(2(−21)2,4(−21))=(2(41),−2)=(21,−2).
(ii) Parabola y2=−2x, one end is (−2,2).
- Equation: y2=−2x⟹y2=4(−21)x. So, a=−21.
- Given end (x1,y1)=(−2,2).
- Using x1x2=a2: (−2)⋅x2=(−21)2⟹−2x2=41⟹x2=−81.
- The point (x2,y2) lies on the parabola: y22=−2x2=−2(−81)=41⟹y2=±21.
- Using parametric form: a=−21, points are (−21t2,−t). For (−2,2), −t1=2⟹t1=−2.
- For a focal chord, t1t2=−1⟹−2t2=−1⟹t2=21.
- Other end: (−21t22,−t2)=(−21(21)2,−21)=(−21(41),−21)=(−81,−21).
(iii) Parabola x2=4y, one end is (−4,4).
- Equation: x2=4y⟹x2=4(1)y. So, a=1.
- Given end (x1,y1)=(−4,4).
- Using y1y2=a2: 4⋅y2=12⟹4y2=1⟹y2=41.
- The point (x2,y2) lies on the parabola: x22=4y2=4(41)=1⟹x2=±1.
- Using parametric form: a=1, points are (2t,t2). For (−4,4), 2t1=−4⟹t1=−2.
- For a focal chord, t1t2=−1⟹−2t2=−1⟹t2=21.
- Other end: (2t2,t22)=(2(21),(21)2)=(1,41).
(iv) Parabola (y−1)2=4−8x, one end is (−4,−5).
- Equation: (y−1)2=−8(x−21). This is a translated parabola (y−k)2=4a(x−h) with h=21, k=1, and 4a=−8⟹a=−2.
- The parametric form for this translated parabola is (h+at2,k+2at)=(21−2t2,1−4t).
- Given end (x1,y1)=(−4,−5).
- Equating with parametric form:
- y1=1−4t1=−5⟹−4t1=−6⟹t1=23.
- Check with x-coordinate: x1=21−2t12=21−2(23)2=21−2(49)=21−29=−28=−4. This matches.
- For a focal chord, t1t2=−1⟹23t2=−1⟹t2=−32.
- Other end: (21−2t22,1−4t2)=(21−2(−32)2,1−4(−32))=(21−2(94),1+38)=(21−98,33+8)=(189−16,311)=(−187,311).