Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix}$, where x,y ∈ R. If $A^3...

Let

A=[012x031y0]A = \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix}, where x,y ∈ R. If A3=AA^3 = A and the positive value of x belongs to the interval (n - 1, n] where nNn \in N, then 45n3\frac{45}{n^3} is equal to

Answer

45/8

Explanation

Solution

To solve the problem, we are given the matrix A=[012x031y0]A = \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix} and the condition A3=AA^3 = A. We need to find the positive value of xx, determine nn such that x(n1,n]x \in (n-1, n], and then calculate 45n3\frac{45}{n^3}.

First, let's calculate A2A^2: A2=AA=[012x031y0][012x031y0]=[(0)(0)+(1)(x)+(2)(1)(0)(1)+(1)(0)+(2)(y)(0)(2)+(1)(3)+(2)(0)(x)(0)+(0)(x)+(3)(1)(x)(1)+(0)(0)+(3)(y)(x)(2)+(0)(3)+(3)(0)(1)(0)+(y)(x)+(0)(1)(1)(1)+(y)(0)+(0)(y)(1)(2)+(y)(3)+(0)(0)]A^2 = A \cdot A = \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix} = \begin{bmatrix} (0)(0)+(1)(x)+(2)(1) & (0)(1)+(1)(0)+(2)(y) & (0)(2)+(1)(3)+(2)(0) \\ (x)(0)+(0)(x)+(3)(1) & (x)(1)+(0)(0)+(3)(y) & (x)(2)+(0)(3)+(3)(0) \\ (1)(0)+(y)(x)+(0)(1) & (1)(1)+(y)(0)+(0)(y) & (1)(2)+(y)(3)+(0)(0) \end{bmatrix} A2=[x+22y33x+3y2xxy12+3y]A^2 = \begin{bmatrix} x+2 & 2y & 3 \\ 3 & x+3y & 2x \\ xy & 1 & 2+3y \end{bmatrix}

Next, let's calculate A3=A2AA^3 = A^2 \cdot A: A3=[x+22y33x+3y2xxy12+3y][012x031y0]=[(x+2)(0)+(2y)(x)+(3)(1)(x+2)(1)+(2y)(0)+(3)(y)(x+2)(2)+(2y)(3)+(3)(0)(3)(0)+(x+3y)(x)+(2x)(1)(3)(1)+(x+3y)(0)+(2x)(y)(3)(2)+(x+3y)(3)+(2x)(0)(xy)(0)+(1)(x)+(2+3y)(1)(xy)(1)+(1)(0)+(2+3y)(y)(xy)(2)+(1)(3)+(2+3y)(0)]A^3 = \begin{bmatrix} x+2 & 2y & 3 \\ 3 & x+3y & 2x \\ xy & 1 & 2+3y \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix} = \begin{bmatrix} (x+2)(0)+(2y)(x)+(3)(1) & (x+2)(1)+(2y)(0)+(3)(y) & (x+2)(2)+(2y)(3)+(3)(0) \\ (3)(0)+(x+3y)(x)+(2x)(1) & (3)(1)+(x+3y)(0)+(2x)(y) & (3)(2)+(x+3y)(3)+(2x)(0) \\ (xy)(0)+(1)(x)+(2+3y)(1) & (xy)(1)+(1)(0)+(2+3y)(y) & (xy)(2)+(1)(3)+(2+3y)(0) \end{bmatrix} A3=[2xy+3x+2+3y2x+4+6yx2+3xy+2x3+2xy6+3x+9yx+2+3yxy+2y+3y22xy+3]A^3 = \begin{bmatrix} 2xy+3 & x+2+3y & 2x+4+6y \\ x^2+3xy+2x & 3+2xy & 6+3x+9y \\ x+2+3y & xy+2y+3y^2 & 2xy+3 \end{bmatrix}

Now, we equate A3=AA^3 = A: [2xy+3x+2+3y2x+4+6yx2+3xy+2x3+2xy6+3x+9yx+2+3yxy+2y+3y22xy+3]=[012x031y0]\begin{bmatrix} 2xy+3 & x+2+3y & 2x+4+6y \\ x^2+3xy+2x & 3+2xy & 6+3x+9y \\ x+2+3y & xy+2y+3y^2 & 2xy+3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ x & 0 & 3 \\ 1 & y & 0 \end{bmatrix}

Equating the corresponding elements, we get a system of equations:

  1. From a11a_{11}: 2xy+3=0    2xy=32xy+3 = 0 \implies 2xy = -3
  2. From a12a_{12}: x+2+3y=1    x+3y=1x+2+3y = 1 \implies x+3y = -1
  3. From a13a_{13}: 2x+4+6y=2    2(x+3y)+4=22x+4+6y = 2 \implies 2(x+3y)+4 = 2. Substituting x+3y=1x+3y=-1 from (2), we get 2(1)+4=2    2+4=2    2=22(-1)+4=2 \implies -2+4=2 \implies 2=2. This is consistent.
  4. From a21a_{21}: x2+3xy+2x=x    x2+3xy+x=0x^2+3xy+2x = x \implies x^2+3xy+x = 0.
  5. From a22a_{22}: 3+2xy=03+2xy = 0. This is the same as (1).
  6. From a23a_{23}: 6+3x+9y=3    3(2+x+3y)=3    2+x+3y=1    x+3y=16+3x+9y = 3 \implies 3(2+x+3y) = 3 \implies 2+x+3y = 1 \implies x+3y = -1. This is the same as (2).
  7. From a31a_{31}: x+2+3y=1x+2+3y = 1. This is the same as (2).
  8. From a32a_{32}: xy+2y+3y2=y    xy+y+3y2=0    y(x+1+3y)=0xy+2y+3y^2 = y \implies xy+y+3y^2 = 0 \implies y(x+1+3y) = 0. Since 2xy=32xy=-3, y0y \neq 0. Therefore, x+1+3y=0    x+3y=1x+1+3y = 0 \implies x+3y = -1. This is the same as (2).
  9. From a33a_{33}: 2xy+3=02xy+3 = 0. This is the same as (1).

So, we have two independent equations: (I) 2xy=32xy = -3 (II) x+3y=1x+3y = -1

From equation (II), we can express yy in terms of xx: 3y=1x    y=1x33y = -1-x \implies y = \frac{-1-x}{3}. Substitute this expression for yy into equation (I): 2x(1x3)=32x \left( \frac{-1-x}{3} \right) = -3 2x(1x)=92x(-1-x) = -9 2x2x2=9-2x - 2x^2 = -9 2x2+2x9=02x^2 + 2x - 9 = 0

This is a quadratic equation for xx. We use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2-4ac}}{2a}: x=2±224(2)(9)2(2)x = \frac{-2 \pm \sqrt{2^2 - 4(2)(-9)}}{2(2)} x=2±4+724x = \frac{-2 \pm \sqrt{4 + 72}}{4} x=2±764x = \frac{-2 \pm \sqrt{76}}{4} x=2±2194x = \frac{-2 \pm 2\sqrt{19}}{4} x=1±192x = \frac{-1 \pm \sqrt{19}}{2}

We are given that xx is a positive value. Therefore, we choose the positive root: x=1+192x = \frac{-1 + \sqrt{19}}{2}

Now, we need to find nNn \in N such that x(n1,n]x \in (n-1, n]. We know that 42=164^2 = 16 and 52=255^2 = 25, so 4<19<54 < \sqrt{19} < 5. To get a more precise estimate, 4.32=18.494.3^2 = 18.49 and 4.42=19.364.4^2 = 19.36. So 4.3<19<4.44.3 < \sqrt{19} < 4.4. Let's use these bounds to estimate xx: Lower bound for xx: 1+4.32=3.32=1.65\frac{-1 + 4.3}{2} = \frac{3.3}{2} = 1.65 Upper bound for xx: 1+4.42=3.42=1.7\frac{-1 + 4.4}{2} = \frac{3.4}{2} = 1.7 So, 1.65<x<1.71.65 < x < 1.7.

This implies that xx lies between 1 and 2. Therefore, x(1,2]x \in (1, 2]. Comparing this with the given interval (n1,n](n-1, n], we find that n1=1n-1 = 1 and n=2n=2. Thus, n=2n=2.

Finally, we need to calculate 45n3\frac{45}{n^3}: 45n3=4523=458\frac{45}{n^3} = \frac{45}{2^3} = \frac{45}{8}.

The final answer is 458\boxed{\frac{45}{8}}.