Solveeit Logo

Question

Question: Find the value of $1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{6n-5}-\frac{1}{6n-1}+....$...

Find the value of 115+17111+....+16n516n1+....1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{6n-5}-\frac{1}{6n-1}+....

Answer

π23\frac{\pi}{2\sqrt{3}}

Explanation

Solution

Let the given series be SS. S=115+17111+113117+....S = 1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+....

The general term of the series can be written as (16n516n1)\left( \frac{1}{6n-5} - \frac{1}{6n-1} \right) for n=1,2,3,n=1, 2, 3, \dots. So, S=n=1(16n516n1)S = \sum_{n=1}^{\infty} \left( \frac{1}{6n-5} - \frac{1}{6n-1} \right).

We can express this series as the value of a definite integral. Consider the function f(x)=n=1(x6n56n5x6n16n1)f(x) = \sum_{n=1}^{\infty} \left( \frac{x^{6n-5}}{6n-5} - \frac{x^{6n-1}}{6n-1} \right). Then S=f(1)S = f(1).

To find f(x)f(x), we first find f(x)f'(x): f(x)=n=1(x6n6x6n2)f'(x) = \sum_{n=1}^{\infty} \left( x^{6n-6} - x^{6n-2} \right) f(x)=(1x4)+(x6x10)+(x12x16)+f'(x) = (1 - x^4) + (x^6 - x^{10}) + (x^{12} - x^{16}) + \dots This is a geometric series. f(x)=n=0x6nn=0x6n+4f'(x) = \sum_{n=0}^{\infty} x^{6n} - \sum_{n=0}^{\infty} x^{6n+4} f(x)=11x6x41x6=1x41x6f'(x) = \frac{1}{1-x^6} - \frac{x^4}{1-x^6} = \frac{1-x^4}{1-x^6}.

We can simplify this expression by factoring the numerator and denominator: 1x4=(1x2)(1+x2)1-x^4 = (1-x^2)(1+x^2) 1x6=(1x2)(1+x2+x4)1-x^6 = (1-x^2)(1+x^2+x^4) So, f(x)=(1x2)(1+x2)(1x2)(1+x2+x4)=1+x21+x2+x4f'(x) = \frac{(1-x^2)(1+x^2)}{(1-x^2)(1+x^2+x^4)} = \frac{1+x^2}{1+x^2+x^4}.

Now, we need to find f(1)=01f(x)dxf(1) = \int_0^1 f'(x) dx. S=011+x21+x2+x4dxS = \int_0^1 \frac{1+x^2}{1+x^2+x^4} dx.

To evaluate this integral, we can divide the numerator and denominator by x2x^2: S=011x2+11x2+1+x2dxS = \int_0^1 \frac{\frac{1}{x^2}+1}{\frac{1}{x^2}+1+x^2} dx We can rewrite the denominator as x2+1x2+1=(x1x)2+2+1=(x1x)2+3x^2+\frac{1}{x^2}+1 = \left(x-\frac{1}{x}\right)^2 + 2 + 1 = \left(x-\frac{1}{x}\right)^2 + 3. So, S=011+1x2(x1x)2+3dxS = \int_0^1 \frac{1+\frac{1}{x^2}}{\left(x-\frac{1}{x}\right)^2+3} dx.

Let u=x1xu = x-\frac{1}{x}. Then du=(1+1x2)dxdu = \left(1+\frac{1}{x^2}\right)dx. When x=1x=1, u=111=0u = 1-\frac{1}{1} = 0. When x0+x \to 0^+, u0=u \to 0 - \infty = -\infty.

So the integral becomes: S=0duu2+3S = \int_{-\infty}^{0} \frac{du}{u^2+3} This is a standard integral of the form 1a2+x2dx=1aarctan(xa)\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right). Here a2=3a^2=3, so a=3a=\sqrt{3}. S=[13arctan(u3)]0S = \left[ \frac{1}{\sqrt{3}} \arctan\left(\frac{u}{\sqrt{3}}\right) \right]_{-\infty}^{0} S=13(arctan(03)limuarctan(u3))S = \frac{1}{\sqrt{3}} \left( \arctan\left(\frac{0}{\sqrt{3}}\right) - \lim_{u \to -\infty} \arctan\left(\frac{u}{\sqrt{3}}\right) \right) S=13(0(π2))S = \frac{1}{\sqrt{3}} \left( 0 - \left(-\frac{\pi}{2}\right) \right) S=13(π2)=π23S = \frac{1}{\sqrt{3}} \left( \frac{\pi}{2} \right) = \frac{\pi}{2\sqrt{3}}.

The final answer is π23\frac{\pi}{2\sqrt{3}}.