Solveeit Logo

Question

Question: An isosceles right angled triangle whose sides are 1, 1, $\sqrt{2}$ lies entirely in the first quadr...

An isosceles right angled triangle whose sides are 1, 1, 2\sqrt{2} lies entirely in the first quadrant with the ends of the hypotenuse on the coordinate axes. If it slides prove that the locus of its centroid is (3xy)2+(x3y)2=329(3x-y)^2 + (x-3y)^2 = \frac{32}{9}.

Answer

(3xy)2+(x3y)2=329(3x-y)^2 + (x-3y)^2 = \frac{32}{9}

Explanation

Solution

Let the vertices of the isosceles right-angled triangle on the coordinate axes be A=(a,0)A=(a,0) and B=(0,b)B=(0,b). Since the hypotenuse length is 2\sqrt{2}, we have a2+b2=(2)2=2a^2 + b^2 = (\sqrt{2})^2 = 2. As the triangle lies entirely in the first quadrant, a>0a > 0 and b>0b > 0.

Let C=(xC,yC)C=(x_C, y_C) be the vertex with the right angle. The lengths of the legs ACAC and BCBC are 1. AC2=(xCa)2+(yC0)2=12AC^2 = (x_C - a)^2 + (y_C - 0)^2 = 1^2 BC2=(xC0)2+(yCb)2=12BC^2 = (x_C - 0)^2 + (y_C - b)^2 = 1^2

The vertex CC can be found by considering that it lies on a circle with diameter ABAB. The midpoint of ABAB is M(a2,b2)M(\frac{a}{2}, \frac{b}{2}), and the radius is 22=12\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}. The vector MC\vec{MC} is perpendicular to AB\vec{AB} and has length 12\frac{1}{\sqrt{2}}. The vector AB=(a,b)\vec{AB} = (-a, b). A vector perpendicular to AB\vec{AB} is (b,a)(b, a). So, MC=±12(b,a)a2+b2=±12(b,a)\vec{MC} = \pm \frac{1}{\sqrt{2}} \frac{(b,a)}{\sqrt{a^2+b^2}} = \pm \frac{1}{2}(b,a). Thus, (xC,yC)=(a2,b2)±(b2,a2)(x_C, y_C) = (\frac{a}{2}, \frac{b}{2}) \pm (\frac{b}{2}, \frac{a}{2}).

This gives two possibilities for CC:

  1. C1=(a+b2,a+b2)C_1 = (\frac{a+b}{2}, \frac{a+b}{2})
  2. C2=(ab2,ba2)C_2 = (\frac{a-b}{2}, \frac{b-a}{2})

Since the triangle lies entirely in the first quadrant (a>0,b>0a>0, b>0), CC must have positive coordinates. C1C_1 always satisfies this. C2C_2 only has positive coordinates if a=b=1a=b=1, leading to C2=(0,0)C_2=(0,0). For a continuous sliding triangle, C1C_1 is the appropriate vertex. So, C=(a+b2,a+b2)C = (\frac{a+b}{2}, \frac{a+b}{2}).

The vertices of the triangle are A=(a,0)A=(a,0), B=(0,b)B=(0,b), and C=(a+b2,a+b2)C=(\frac{a+b}{2}, \frac{a+b}{2}). The centroid G=(x,y)G=(x,y) is given by: x=a+0+a+b23=3a+b6x = \frac{a + 0 + \frac{a+b}{2}}{3} = \frac{3a+b}{6} y=0+b+a+b23=a+3b6y = \frac{0 + b + \frac{a+b}{2}}{3} = \frac{a+3b}{6}

We have: 6x=3a+b(1)6x = 3a+b \quad (1) 6y=a+3b(2)6y = a+3b \quad (2) And the constraint a2+b2=2a^2+b^2=2.

Solving for aa and bb from (1) and (2): Multiply (1) by 3: 18x=9a+3b18x = 9a+3b. Subtract (2): 18x6y=8a    a=18x6y8=9x3y418x - 6y = 8a \implies a = \frac{18x-6y}{8} = \frac{9x-3y}{4}. Multiply (2) by 3: 18y=3a+9b18y = 3a+9b. Subtract (1): 18y6x=8b    b=18y6x8=9y3x418y - 6x = 8b \implies b = \frac{18y-6x}{8} = \frac{9y-3x}{4}.

Substitute these into a2+b2=2a^2+b^2=2: (9x3y4)2+(9y3x4)2=2\left(\frac{9x-3y}{4}\right)^2 + \left(\frac{9y-3x}{4}\right)^2 = 2 (9x3y)216+(9y3x)216=2\frac{(9x-3y)^2}{16} + \frac{(9y-3x)^2}{16} = 2 (9x3y)2+(9y3x)2=32(9x-3y)^2 + (9y-3x)^2 = 32 [3(3xy)]2+[3(3yx)]2=32[3(3x-y)]^2 + [3(3y-x)]^2 = 32 9(3xy)2+9(3yx)2=329(3x-y)^2 + 9(3y-x)^2 = 32 9(3xy)2+9(x3y)2=329(3x-y)^2 + 9(x-3y)^2 = 32 Divide by 9: (3xy)2+(x3y)2=329(3x-y)^2 + (x-3y)^2 = \frac{32}{9} This proves the locus of the centroid.