Question
Question: $3tan \frac{6\pi}{18}-27tan \frac{4\pi}{18}+33 tan^2 \frac{2\pi}{18}$ is equal to ...
3tan186π−27tan184π+33tan2182π is equal to

Answer
1
Explanation
Solution
Let x=tan18π. The expression to be evaluated is 3x6−27x4+33x2.
Let θ=18π. Then 3θ=183π=6π.
The triple angle formula for tangent is tan(3θ)=1−3tan2θ3tanθ−tan3θ.
Substitute tan(3θ)=tan6π=31 and tanθ=x:
31=1−3x23x−x3
1−3x2=3(3x−x3)
Square both sides:
(1−3x2)2=3(3x−x3)2
1−6x2+9x4=3(9x2−6x4+x6)
1−6x2+9x4=27x2−18x4+3x6
Rearrange the terms:
3x6−18x4−9x4+27x2+6x2−1=0
3x6−27x4+33x2−1=0
Thus, 3x6−27x4+33x2=1.