Solveeit Logo

Question

Question: $3tan \frac{6\pi}{18}-27tan \frac{4\pi}{18}+33 tan^2 \frac{2\pi}{18}$ is equal to ...

3tan6π1827tan4π18+33tan22π183tan \frac{6\pi}{18}-27tan \frac{4\pi}{18}+33 tan^2 \frac{2\pi}{18} is equal to

Answer

1

Explanation

Solution

Let x=tanπ18x = \tan \frac{\pi}{18}. The expression to be evaluated is 3x627x4+33x23x^6 - 27x^4 + 33x^2.

Let θ=π18\theta = \frac{\pi}{18}. Then 3θ=3π18=π63\theta = \frac{3\pi}{18} = \frac{\pi}{6}.

The triple angle formula for tangent is tan(3θ)=3tanθtan3θ13tan2θ\tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.

Substitute tan(3θ)=tanπ6=13\tan(3\theta) = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} and tanθ=x\tan\theta = x:

13=3xx313x2\frac{1}{\sqrt{3}} = \frac{3x - x^3}{1 - 3x^2}

13x2=3(3xx3)1 - 3x^2 = \sqrt{3}(3x - x^3)

Square both sides:

(13x2)2=3(3xx3)2(1 - 3x^2)^2 = 3(3x - x^3)^2

16x2+9x4=3(9x26x4+x6)1 - 6x^2 + 9x^4 = 3(9x^2 - 6x^4 + x^6)

16x2+9x4=27x218x4+3x61 - 6x^2 + 9x^4 = 27x^2 - 18x^4 + 3x^6

Rearrange the terms:

3x618x49x4+27x2+6x21=03x^6 - 18x^4 - 9x^4 + 27x^2 + 6x^2 - 1 = 0

3x627x4+33x21=03x^6 - 27x^4 + 33x^2 - 1 = 0

Thus, 3x627x4+33x2=13x^6 - 27x^4 + 33x^2 = 1.