Solveeit Logo

Question

Question: 118 g of CH3CONH₂ undergoes Hoffmann bromamide degradation to produce CH3NH2. Find the sum of number...

118 g of CH3CONH₂ undergoes Hoffmann bromamide degradation to produce CH3NH2. Find the sum of number of moles of Bromine and sodium hydroxide used for this reaction. [Nearest integer]

Answer

10

Explanation

Solution

The Hoffmann bromamide degradation reaction converts an amide into a primary amine with one less carbon atom. The general balanced chemical equation for this reaction is:

RCONH2+Br2+4NaOHRNH2+Na2CO3+2NaBr+2H2O\text{RCONH}_2 + \text{Br}_2 + 4\text{NaOH} \rightarrow \text{RNH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O}

For CH3CONH2\text{CH}_3\text{CONH}_2 (acetamide), R = CH3\text{CH}_3. So the specific reaction is:

CH3CONH2+Br2+4NaOHCH3NH2+Na2CO3+2NaBr+2H2O\text{CH}_3\text{CONH}_2 + \text{Br}_2 + 4\text{NaOH} \rightarrow \text{CH}_3\text{NH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O}

Step 1: Calculate the molar mass of CH3CONH2\text{CH}_3\text{CONH}_2.

Molar mass of C = 12 g/mol Molar mass of H = 1 g/mol Molar mass of N = 14 g/mol Molar mass of O = 16 g/mol

Molar mass of CH3CONH2\text{CH}_3\text{CONH}_2 = (2×12)+(7×1)+14+16=59 g/mol(2 \times 12) + (7 \times 1) + 14 + 16 = 59 \text{ g/mol}

Step 2: Calculate the number of moles of CH3CONH2\text{CH}_3\text{CONH}_2.

Given mass of CH3CONH2\text{CH}_3\text{CONH}_2 = 118 g Number of moles = MassMolar mass=118 g59 g/mol=2 moles\frac{\text{Mass}}{\text{Molar mass}} = \frac{118 \text{ g}}{59 \text{ g/mol}} = 2 \text{ moles}

Step 3: Determine the moles of Br2\text{Br}_2 and NaOH\text{NaOH} used.

From the balanced chemical equation, 1 mole of CH3CONH2\text{CH}_3\text{CONH}_2 reacts with 1 mole of Br2\text{Br}_2 and 4 moles of NaOH\text{NaOH}.

Since we have 2 moles of CH3CONH2\text{CH}_3\text{CONH}_2:

Moles of Br2\text{Br}_2 used = 2 moles CH3CONH2×1 mole Br21 mole CH3CONH2=2 moles2 \text{ moles } \text{CH}_3\text{CONH}_2 \times \frac{1 \text{ mole } \text{Br}_2}{1 \text{ mole } \text{CH}_3\text{CONH}_2} = 2 \text{ moles}

Moles of NaOH\text{NaOH} used = 2 moles CH3CONH2×4 moles NaOH1 mole CH3CONH2=8 moles2 \text{ moles } \text{CH}_3\text{CONH}_2 \times \frac{4 \text{ moles } \text{NaOH}}{1 \text{ mole } \text{CH}_3\text{CONH}_2} = 8 \text{ moles}

Step 4: Calculate the sum of moles of Br2\text{Br}_2 and NaOH\text{NaOH} used.

Sum = Moles of Br2\text{Br}_2 + Moles of NaOH\text{NaOH} Sum = 2 moles+8 moles=10 moles2 \text{ moles} + 8 \text{ moles} = 10 \text{ moles}

The nearest integer to 10 is 10.