Solveeit Logo

Question

Question: Solve the system of equations: \[48x - 64y = 48y + 24\] \[ry = \frac{1}{8} - 12x\]...

Solve the system of equations: 48x64y=48y+2448x - 64y = 48y + 24 ry=1812xry = \frac{1}{8} - 12x

Answer

x=7+12r24(r+28),y=32956(r+28),r28x = \frac{7 + 12r}{24\,(r + 28)},\quad y = -\,\frac{329}{56\,(r + 28)},\quad r \neq -28

Explanation

Solution

Step 1. Rearrange the first equation:

48x64y=48y+24    48x=112y+24    y=48x24112=6x314.48x - 64y = 48y + 24 \;\Longrightarrow\; 48x = 112y + 24 \;\Longrightarrow\; y = \frac{48x - 24}{112} = \frac{6x - 3}{14}\,.

Step 2. Substitute yy into the second equation ry=1812xry = \tfrac{1}{8} - 12x:

r ⁣(6x314)=1812x    r(6x3)=14(1812x)=74168x.r\!\Bigl(\frac{6x - 3}{14}\Bigr) = \frac{1}{8} - 12x \;\Longrightarrow\; r(6x - 3) = 14\Bigl(\frac{1}{8} - 12x\Bigr) = \frac{7}{4} - 168x.

Rearrange for xx:

6rx+168x=74+3r    x(6r+168)=74+3r    x=74+3r6(r+28)=7+12r24(r+28).6r\,x + 168x = \frac{7}{4} + 3r \;\Longrightarrow\; x\,(6r + 168) = \frac{7}{4} + 3r \;\Longrightarrow\; x = \frac{\frac{7}{4} + 3r}{6(r + 28)} = \frac{7 + 12r}{24\,(r + 28)}\,.

Step 3. Plug xx back into y=6x314y = \frac{6x - 3}{14}:

y=6(7+12r24(r+28))314=7+12r4(r+28)314=(7+12r)12(r+28)56(r+28)=32956(r+28).y = \frac{6\Bigl(\frac{7 + 12r}{24(r + 28)}\Bigr) - 3}{14} = \frac{\frac{7 + 12r}{4(r + 28)} - 3}{14} = \frac{(7 + 12r) - 12(r + 28)}{56(r + 28)} = -\,\frac{329}{56\,(r + 28)}\,.

Conclusion:

x=7+12r24(r+28),y=32956(r+28),r28.x = \frac{7 + 12r}{24(r + 28)},\quad y = -\frac{329}{56(r + 28)},\quad r \neq -28.