Solveeit Logo

Question

Question: In parallelogram ABCD, |AB| = a, |AD| = b, |AC| = c then DA.AB has the value...

In parallelogram ABCD, |AB| = a, |AD| = b, |AC| = c then DA.AB has the value

A

12(a2+b2+c2)\frac{1}{2}(a^2+b^2+c^2)

B

12(a2b2+c2)\frac{1}{2}(a^2-b^2+c^2)

C

12(a2+b2c2)\frac{1}{2}(a^2+b^2-c^2)

D

12(b2+c2a2)\frac{1}{2}(b^2+c^2-a^2)

Answer

12(a2+b2c2)\frac{1}{2}(a^2+b^2-c^2)

Explanation

Solution

Let

AB=a,AD=d.\vec{AB} = \vec{a},\quad \vec{AD} = \vec{d}.

Then the diagonal AC\vec{AC} is given by

AC=AB+AD=a+d.\vec{AC} = \vec{AB} + \vec{AD} = \vec{a} + \vec{d}.

Taking the square of the magnitude of AC\vec{AC}, we have

AC2=a+d2=a2+d2+2ad.|\vec{AC}|^2 = |\vec{a}+\vec{d}|^2 = |\vec{a}|^2 + |\vec{d}|^2 + 2\,\vec{a}\cdot\vec{d}.

Given AB=a|\vec{AB}| = a, AD=b|\vec{AD}| = b, and AC=c|\vec{AC}| = c, this becomes

c2=a2+b2+2ad.c^2 = a^2 + b^2 + 2\,\vec{a}\cdot\vec{d}.

However, note that the problem asks for DAAB\vec{DA}\cdot \vec{AB}. Since

DA=AD,\vec{DA} = -\vec{AD},

it follows that

DAAB=ADAB=ad.\vec{DA}\cdot\vec{AB} = -\vec{AD}\cdot\vec{AB} = -\vec{a}\cdot\vec{d}.

Thus, from the equation above,

ad=c2a2b22.\vec{a}\cdot\vec{d} = \frac{c^2 - a^2 - b^2}{2}.

Therefore,

DAAB=c2a2b22=a2+b2c22.\vec{DA}\cdot\vec{AB} = -\frac{c^2 - a^2 - b^2}{2} = \frac{a^2 + b^2 - c^2}{2}.