Solveeit Logo

Question

Question: If $y=y(x), y \in \left[0,\frac{\pi}{2}\right)$ is the solution of the differential equation $\sec y...

If y=y(x),y[0,π2)y=y(x), y \in \left[0,\frac{\pi}{2}\right) is the solution of the differential equation secydydxsin(x+y)sin(xy)=0\sec y \frac{dy}{dx} - \sin(x+y) - \sin(x-y) = 0, with

y(0)=0y(0) = 0, then 5y(π2)5y\left(\frac{\pi}{2}\right) is equal to ______.

Answer

5arctan(2)

Explanation

Solution

The given differential equation is: secydydxsin(x+y)sin(xy)=0\sec y \frac{dy}{dx} - \sin(x+y) - \sin(x-y) = 0

First, simplify the trigonometric terms sin(x+y)+sin(xy)\sin(x+y) + \sin(x-y). Using the sum-to-product identity sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right): Let A=x+yA = x+y and B=xyB = x-y. Then A+B2=(x+y)+(xy)2=2x2=x\frac{A+B}{2} = \frac{(x+y) + (x-y)}{2} = \frac{2x}{2} = x. And AB2=(x+y)(xy)2=2y2=y\frac{A-B}{2} = \frac{(x+y) - (x-y)}{2} = \frac{2y}{2} = y. So, sin(x+y)+sin(xy)=2sinxcosy\sin(x+y) + \sin(x-y) = 2 \sin x \cos y.

Substitute this back into the differential equation: secydydx(2sinxcosy)=0\sec y \frac{dy}{dx} - (2 \sin x \cos y) = 0 secydydx=2sinxcosy\sec y \frac{dy}{dx} = 2 \sin x \cos y Rewrite secy\sec y as 1cosy\frac{1}{\cos y}: 1cosydydx=2sinxcosy\frac{1}{\cos y} \frac{dy}{dx} = 2 \sin x \cos y Multiply both sides by cosy\cos y (note that y[0,π/2)y \in [0, \pi/2), so cosy0\cos y \neq 0): dydx=2sinxcos2y\frac{dy}{dx} = 2 \sin x \cos^2 y This is a separable differential equation. Separate the variables yy and xx: dycos2y=2sinxdx\frac{dy}{\cos^2 y} = 2 \sin x dx sec2ydy=2sinxdx\sec^2 y dy = 2 \sin x dx Now, integrate both sides: sec2ydy=2sinxdx\int \sec^2 y dy = \int 2 \sin x dx tany=2cosx+C\tan y = -2 \cos x + C Use the initial condition y(0)=0y(0) = 0 to find the constant CC: Substitute x=0x=0 and y=0y=0 into the general solution: tan(0)=2cos(0)+C\tan(0) = -2 \cos(0) + C 0=2(1)+C0 = -2(1) + C C=2C = 2 So, the particular solution to the differential equation is: tany=2cosx+2\tan y = -2 \cos x + 2 tany=2(1cosx)\tan y = 2(1 - \cos x) We need to find the value of 5y(π2)5y\left(\frac{\pi}{2}\right). First, find y(π2)y\left(\frac{\pi}{2}\right) by substituting x=π2x = \frac{\pi}{2} into the solution: tan(y(π2))=2(1cos(π2))\tan\left(y\left(\frac{\pi}{2}\right)\right) = 2\left(1 - \cos\left(\frac{\pi}{2}\right)\right) Since cos(π2)=0\cos\left(\frac{\pi}{2}\right) = 0: tan(y(π2))=2(10)\tan\left(y\left(\frac{\pi}{2}\right)\right) = 2(1 - 0) tan(y(π2))=2\tan\left(y\left(\frac{\pi}{2}\right)\right) = 2 Let y0=y(π2)y_0 = y\left(\frac{\pi}{2}\right). Then tany0=2\tan y_0 = 2. Since y[0,π2)y \in \left[0,\frac{\pi}{2}\right), y0y_0 must be arctan(2)\arctan(2). So, y(π2)=arctan(2)y\left(\frac{\pi}{2}\right) = \arctan(2). The question asks for 5y(π2)5y\left(\frac{\pi}{2}\right): 5y(π2)=5arctan(2)5y\left(\frac{\pi}{2}\right) = 5 \arctan(2)

Thus, the final answer is 5arctan(2)5\arctan(2).