Solveeit Logo

Question

Question: If $\sin^{-1}x + \cos^{-1}y = \frac{3\pi}{10}$, then the value of $\cos^{-1}x + \sin^{-1}y$ is...

If sin1x+cos1y=3π10\sin^{-1}x + \cos^{-1}y = \frac{3\pi}{10}, then the value of cos1x+sin1y\cos^{-1}x + \sin^{-1}y is

A

π10\frac{\pi}{10}

B

7π10\frac{7\pi}{10}

C

9π10\frac{9\pi}{10}

D

3π10\frac{3\pi}{10}

Answer

7π10\dfrac{7\pi}{10}

Explanation

Solution

Explanation:
Let

A=sin1xandB=cos1y.A = \sin^{-1}x \quad \text{and} \quad B = \cos^{-1}y.

We are given A+B=3π10A + B = \dfrac{3\pi}{10}.
Recall that:

cos1x=π2sin1xandsin1y=π2cos1y.\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}x \quad \text{and} \quad \sin^{-1}y = \frac{\pi}{2} - \cos^{-1}y.

Thus,

cos1x+sin1y=(π2A)+(π2B)=π(A+B)=π3π10=7π10.\cos^{-1}x + \sin^{-1}y = \left(\frac{\pi}{2} - A\right) + \left(\frac{\pi}{2} - B\right) = \pi - (A+B) = \pi - \frac{3\pi}{10} = \frac{7\pi}{10}.