Solveeit Logo

Question

Question: If A is a non-singular matrix of order n then which of the following is / are correct?...

If A is a non-singular matrix of order n then which of the following is / are correct?

A

adj (ATA^T) = (adj A)T^T

B

adj (A1A^{-1}) = (adj A)1^{-1}

C

adj (A2A^2) = (adj A)2^2

D

If n = 3 then adj(2A) = 4adj A

Answer

A, B, C, D

Explanation

Solution

The problem asks us to identify the correct properties of the adjoint of a non-singular matrix A of order n. We will check each option using the fundamental properties of determinants, inverses, and adjoints.

Key properties of adjoint matrix:

  1. For any square matrix A, Aadj(A)=adj(A)A=AInA \cdot \text{adj}(A) = \text{adj}(A) \cdot A = |A| I_n, where A|A| is the determinant of A and InI_n is the identity matrix of order n.
  2. If A is non-singular (i.e., A0|A| \neq 0), then A1=1Aadj(A)A^{-1} = \frac{1}{|A|} \text{adj}(A). From this, we can also write adj(A)=AA1\text{adj}(A) = |A| A^{-1}.

Let's analyze each option:

(A) adj (ATA^T) = (adj A)T^T We use the property adj(X)=XX1\text{adj}(X) = |X| X^{-1}. LHS: adj(AT)=AT(AT)1\text{adj}(A^T) = |A^T| (A^T)^{-1}. Since AT=A|A^T| = |A| and (AT)1=(A1)T(A^T)^{-1} = (A^{-1})^T, adj(AT)=A(A1)T\text{adj}(A^T) = |A| (A^{-1})^T.

RHS: (adj A)T=(AA1)T(\text{adj A})^T = (|A| A^{-1})^T. Using the property (kM)T=kMT(kM)^T = kM^T for a scalar k and matrix M, (adj A)T=A(A1)T(\text{adj A})^T = |A| (A^{-1})^T.

Since LHS = RHS, option (A) is correct.

(B) adj (A1A^{-1}) = (adj A)1^{-1} We use the property adj(X)=XX1\text{adj}(X) = |X| X^{-1}. LHS: adj(A1)=A1(A1)1\text{adj}(A^{-1}) = |A^{-1}| (A^{-1})^{-1}. Since A1=1A|A^{-1}| = \frac{1}{|A|} and (A1)1=A(A^{-1})^{-1} = A, adj(A1)=1AA\text{adj}(A^{-1}) = \frac{1}{|A|} A.

RHS: (adj A)1=(AA1)1(\text{adj A})^{-1} = (|A| A^{-1})^{-1}. Using the property (kM)1=1kM1(kM)^{-1} = \frac{1}{k} M^{-1} for a scalar k and matrix M, (adj A)1=1A(A1)1=1AA(\text{adj A})^{-1} = \frac{1}{|A|} (A^{-1})^{-1} = \frac{1}{|A|} A.

Since LHS = RHS, option (B) is correct.

(C) adj (A2A^2) = (adj A)2^2 We use the property adj(X)=XX1\text{adj}(X) = |X| X^{-1}. LHS: adj(A2)=A2(A2)1\text{adj}(A^2) = |A^2| (A^2)^{-1}. Since A2=AA=AA=A2|A^2| = |A \cdot A| = |A||A| = |A|^2 and (A2)1=(AA)1=A1A1=(A1)2(A^2)^{-1} = (A \cdot A)^{-1} = A^{-1} A^{-1} = (A^{-1})^2, adj(A2)=A2(A1)2\text{adj}(A^2) = |A|^2 (A^{-1})^2.

RHS: (adj A)2=(AA1)2(\text{adj A})^2 = (|A| A^{-1})^2. (AA1)2=(AA1)(AA1)=A2(A1A1)=A2(A1)2(|A| A^{-1})^2 = (|A| A^{-1}) (|A| A^{-1}) = |A|^2 (A^{-1} A^{-1}) = |A|^2 (A^{-1})^2.

Since LHS = RHS, option (C) is correct. Alternatively, we can use the property adj(XY)=adj(Y)adj(X)\text{adj}(XY) = \text{adj}(Y)\text{adj}(X). For X=AX=A and Y=AY=A, we get adj(AA)=adj(A)adj(A)\text{adj}(A \cdot A) = \text{adj}(A)\text{adj}(A), which means adj(A2)=(adj A)2\text{adj}(A^2) = (\text{adj A})^2.

(D) If n = 3 then adj(2A) = 4adj A We use the general property adj(kA)=kn1adj(A)\text{adj}(kA) = k^{n-1} \text{adj}(A), where n is the order of the matrix. In this option, k=2k=2 and n=3n=3. So, adj(2A)=231adj(A)=22adj(A)=4adj(A)\text{adj}(2A) = 2^{3-1} \text{adj}(A) = 2^2 \text{adj}(A) = 4 \text{adj}(A).

This property is correct.

Since all four options (A), (B), (C), and (D) are correct, this is a multiple correct options question.