Solveeit Logo

Question

Question: $f(n)=\sum_{k=0}^{n} \binom{n+k}{k} \frac{1}{2^k}$; then find $\frac{f(12)+f(14)}{f(9)}= \dots$...

f(n)=k=0n(n+kk)12kf(n)=\sum_{k=0}^{n} \binom{n+k}{k} \frac{1}{2^k}; then find f(12)+f(14)f(9)=\frac{f(12)+f(14)}{f(9)}= \dots

Answer

40

Explanation

Solution

We are given

f(n)=k=0n(n+kk)12k.f(n)=\sum_{k=0}^{n}\binom{n+k}{k}\frac{1}{2^k}.

It is a known result (verified by testing small values, e.g., n=0,1,2,3n=0,1,2,3) that

f(n)=2n.f(n)=2^n.

For example, when n=1n=1:

f(1)=(10)(12)0+(21)(12)1=1+212=1+1=2=21.f(1)=\binom{1}{0}\left(\frac{1}{2}\right)^0+\binom{2}{1}\left(\frac{1}{2}\right)^1=1+2\cdot\frac{1}{2}=1+1=2=2^1.

Thus,

f(12)=212,f(14)=214,f(9)=29.f(12)=2^{12},\quad f(14)=2^{14},\quad f(9)=2^9.

Now, compute the required expression:

f(12)+f(14)f(9)=212+21429=21229+21429=23+25=8+32=40.\frac{f(12)+f(14)}{f(9)}=\frac{2^{12}+2^{14}}{2^9}=\frac{2^{12}}{2^9}+\frac{2^{14}}{2^9}=2^{3}+2^{5}=8+32=40.

Core Explanation:
Recognize the identity f(n)=k=0n(n+kk)12k=2nf(n)=\sum_{k=0}^{n}\binom{n+k}{k}\frac{1}{2^k}=2^n. Substitute n=12,14,9n=12, 14, 9 and simplify.