Solveeit Logo

Question

Question: An isosceles triangle is formed with a rod of length $l_1$ and coefficient of linear expansion $\alp...

An isosceles triangle is formed with a rod of length l1l_1 and coefficient of linear expansion α1\alpha_1 for the base and two thin rods each of length l2l_2 and coefficient of linear expansion α2\alpha_2 for the two pieces, if the distance between the apex and the midpoint of the base remain unchanged as the temperatures varied show that

l1l2=2α2α1\frac{l_1}{l_2} = 2\sqrt{\frac{\alpha_2}{\alpha_1}}.

Answer

The derivation shows that l1l2=2α2α1\frac{l_1}{l_2} = 2\sqrt{\frac{\alpha_2}{\alpha_1}}.

Explanation

Solution

Let the isosceles triangle have base length l1l_1 and equal side lengths l2l_2. Let hh be the height from the apex to the midpoint of the base. The relationship between these lengths is given by the Pythagorean theorem: h2+(l12)2=l22h^2 + \left(\frac{l_1}{2}\right)^2 = l_2^2 The problem states that the height hh remains unchanged as the temperature varies. This means hh is a constant.

Let the initial lengths be l1,0l_{1,0} and l2,0l_{2,0}. When the temperature changes by ΔT\Delta T, the lengths become: l1=l1,0(1+α1ΔT)l_1 = l_{1,0}(1 + \alpha_1 \Delta T) l2=l2,0(1+α2ΔT)l_2 = l_{2,0}(1 + \alpha_2 \Delta T)

Since hh is constant, the relation h2+(l1/2)2=l22h^2 + (l_1/2)^2 = l_2^2 must hold at all temperatures. Let's express h2h^2 using the initial lengths: h2=l2,02(l1,0/2)2h^2 = l_{2,0}^2 - (l_{1,0}/2)^2. Substituting the expressions for l1l_1 and l2l_2 into the Pythagorean theorem: h2+14[l1,0(1+α1ΔT)]2=[l2,0(1+α2ΔT)]2h^2 + \frac{1}{4} [l_{1,0}(1 + \alpha_1 \Delta T)]^2 = [l_{2,0}(1 + \alpha_2 \Delta T)]^2 Substitute the expression for h2h^2: l2,02l1,024+l1,024(1+α1ΔT)2=l2,02(1+α2ΔT)2l_{2,0}^2 - \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4}(1 + \alpha_1 \Delta T)^2 = l_{2,0}^2(1 + \alpha_2 \Delta T)^2 For small temperature changes, we can approximate (1+x)21+2x(1+x)^2 \approx 1+2x and neglect terms of order (ΔT)2(\Delta T)^2: (1+α1ΔT)21+2α1ΔT(1 + \alpha_1 \Delta T)^2 \approx 1 + 2\alpha_1 \Delta T (1+α2ΔT)21+2α2ΔT(1 + \alpha_2 \Delta T)^2 \approx 1 + 2\alpha_2 \Delta T The equation becomes: l2,02l1,024+l1,024(1+2α1ΔT)l2,02(1+2α2ΔT)l_{2,0}^2 - \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4}(1 + 2\alpha_1 \Delta T) \approx l_{2,0}^2(1 + 2\alpha_2 \Delta T) l2,02l1,024+l1,024+l1,024(2α1ΔT)l2,02+l2,02(2α2ΔT)l_{2,0}^2 - \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4}(2\alpha_1 \Delta T) \approx l_{2,0}^2 + l_{2,0}^2(2\alpha_2 \Delta T) Substituting h2=l2,02l1,024h^2 = l_{2,0}^2 - \frac{l_{1,0}^2}{4}: h2+l1,024(1+2α1ΔT)l2,02(1+2α2ΔT)h^2 + \frac{l_{1,0}^2}{4}(1 + 2\alpha_1 \Delta T) \approx l_{2,0}^2(1 + 2\alpha_2 \Delta T) l2,02l1,024+l1,024+l1,024(2α1ΔT)l2,02+l2,02(2α2ΔT)l_{2,0}^2 - \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4} + \frac{l_{1,0}^2}{4}(2\alpha_1 \Delta T) \approx l_{2,0}^2 + l_{2,0}^2(2\alpha_2 \Delta T) l1,024(2α1ΔT)l2,02(2α2ΔT)\frac{l_{1,0}^2}{4}(2\alpha_1 \Delta T) \approx l_{2,0}^2(2\alpha_2 \Delta T) Canceling 2ΔT2\Delta T from both sides: l1,024α1l2,02α2\frac{l_{1,0}^2}{4}\alpha_1 \approx l_{2,0}^2\alpha_2 Rearranging to find the ratio of initial lengths: l1,02l2,024α2α1\frac{l_{1,0}^2}{l_{2,0}^2} \approx \frac{4\alpha_2}{\alpha_1} Taking the square root of both sides gives: l1,0l2,0=2α2α1\frac{l_{1,0}}{l_{2,0}} = 2\sqrt{\frac{\alpha_2}{\alpha_1}} The question implies l1l_1 and l2l_2 are the initial lengths.