Solveeit Logo

Question

Question: \[47C_{4} + \sum^{\underset{5}{r = 1}}{_{}^{52 - r}C}_{3} =\]...

47C4+r=1552rC3=47C_{4} + \sum^{\underset{5}{r = 1}}{_{}^{52 - r}C}_{3} =

A

47C647 ⥂ C_{6}

B

52C552C_{5}

C

15C1515C_{15}

D

None of these

Answer

15C1515C_{15}

Explanation

Solution

47C4+r=1552rC3=51C3+50C3+49C3+48C3+47C3+47C447C_{4} + \sum_{r = 1}^{5}{52 - rC_{3}} =^{51} ⥂ C_{3} +^{50} ⥂ C_{3} +^{49} ⥂ C_{3} +^{48} ⥂ C_{3} +^{47} ⥂ C_{3} +^{47} ⥂ C_{4}

=51C3+50C3+49C3+48C3+48C4=^{51} ⥂ C_{3} +^{50} ⥂ C_{3} +^{49} ⥂ C_{3} +^{48} ⥂ C_{3} +^{48} ⥂ C_{4}

=51C3+50C3+49C3+49C4=^{51} ⥂ C_{3} +^{50} ⥂ C_{3} +^{49} ⥂ C_{3} +^{49} ⥂ C_{4}

x1+x2+.....+x6x_{1} + x_{2} + ..... + x_{6}.