Solveeit Logo

Question

Question: The value of $\lim_{n \to \infty} (\frac{n!}{n^n})^{\frac{3n^3+4}{4n^4-1}}$, $n \in N$ is equal to :...

The value of limn(n!nn)3n3+44n41\lim_{n \to \infty} (\frac{n!}{n^n})^{\frac{3n^3+4}{4n^4-1}}, nNn \in N is equal to :

A

(1e)3/4(\frac{1}{e})^{3/4}

B

e3/4e^{3/4}

C

e1e^{-1}

D

0

Answer

(1e)3/4(\frac{1}{e})^{3/4}

Explanation

Solution

Let the given limit be LL. The expression is L=limn(n!nn)3n3+44n41L = \lim_{n \to \infty} (\frac{n!}{n^n})^{\frac{3n^3+4}{4n^4-1}}.

This is of the form limn(an)bn\lim_{n \to \infty} (a_n)^{b_n}, where an=n!nna_n = \frac{n!}{n^n} and bn=3n3+44n41b_n = \frac{3n^3+4}{4n^4-1}.

First, let's find the limit of the base ana_n: an=n!nn=123nnnnn=1n2n3nnna_n = \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdots n}{n \cdot n \cdot n \cdots n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n}{n}.

For n>1n > 1, kn1\frac{k}{n} \le 1 for all k=1,2,,nk=1, 2, \dots, n. So, 0<an=1n2nnn1n11=1n0 < a_n = \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} \le \frac{1}{n} \cdot 1 \cdots 1 = \frac{1}{n}. As nn \to \infty, 1n0\frac{1}{n} \to 0. By the Squeeze Theorem, limnan=0\lim_{n \to \infty} a_n = 0.

Next, let's find the limit of the exponent bnb_n: bn=3n3+44n41b_n = \frac{3n^3+4}{4n^4-1}. To find the limit as nn \to \infty, we divide the numerator and the denominator by the highest power of nn in the denominator, which is n4n^4:

limnbn=limn3n3n4+4n44n4n41n4=limn3n+4n441n4=0+040=0\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{\frac{3n^3}{n^4}+\frac{4}{n^4}}{\frac{4n^4}{n^4}-\frac{1}{n^4}} = \lim_{n \to \infty} \frac{\frac{3}{n}+\frac{4}{n^4}}{4-\frac{1}{n^4}} = \frac{0+0}{4-0} = 0.

The limit is of the indeterminate form 000^0. To evaluate this limit, we consider the limit of the logarithm of the expression:

lnL=limnln[(n!nn)3n3+44n41]=limn(3n3+44n41)ln(n!nn)\ln L = \lim_{n \to \infty} \ln \left[ (\frac{n!}{n^n})^{\frac{3n^3+4}{4n^4-1}} \right] = \lim_{n \to \infty} \left( \frac{3n^3+4}{4n^4-1} \right) \ln \left( \frac{n!}{n^n} \right).

Let's evaluate the limit of the term ln(n!nn)\ln(\frac{n!}{n^n}). ln(n!nn)=ln(n!)ln(nn)=ln(n!)nlnn\ln(\frac{n!}{n^n}) = \ln(n!) - \ln(n^n) = \ln(n!) - n \ln n.

We use the approximation for ln(n!)\ln(n!) for large nn from Stirling's formula: ln(n!)=nlnnn+12ln(2πn)+O(1n)\ln(n!) = n \ln n - n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}).

So, ln(n!nn)=(nlnnn+12ln(2πn)+O(1n))nlnn=n+12ln(2πn)+O(1n)\ln(\frac{n!}{n^n}) = (n \ln n - n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n})) - n \ln n = -n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}).

Now, substitute this back into the limit of lnL\ln L: lnL=limn(3n3+44n41)(n+12ln(2πn)+O(1n))\ln L = \lim_{n \to \infty} \left( \frac{3n^3+4}{4n^4-1} \right) \left( -n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}) \right).

Let's multiply the leading terms: limn(3n34n4)(n)=limn(34n)(n)=limn34=34\lim_{n \to \infty} \left( \frac{3n^3}{4n^4} \right) (-n) = \lim_{n \to \infty} \left( \frac{3}{4n} \right) (-n) = \lim_{n \to \infty} -\frac{3}{4} = -\frac{3}{4}.

Let's verify that the other terms go to zero. The expression is 3n3+44n41=n3(3+4/n3)n4(41/n4)=1n3+4/n341/n4\frac{3n^3+4}{4n^4-1} = \frac{n^3(3+4/n^3)}{n^4(4-1/n^4)} = \frac{1}{n} \frac{3+4/n^3}{4-1/n^4}. The term ln(n!nn)=n+12ln(2πn)+O(1n)\ln(\frac{n!}{n^n}) = -n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}).

The product is (1n3+4/n341/n4)(n+12ln(2πn)+O(1n))\left( \frac{1}{n} \frac{3+4/n^3}{4-1/n^4} \right) \left( -n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}) \right) =3+4/n341/n41n(n+12ln(2πn)+O(1n))= \frac{3+4/n^3}{4-1/n^4} \cdot \frac{1}{n} \left( -n + \frac{1}{2} \ln(2\pi n) + O(\frac{1}{n}) \right) =3+4/n341/n4(1+ln(2πn)2n+O(1n2))= \frac{3+4/n^3}{4-1/n^4} \cdot \left( -1 + \frac{\ln(2\pi n)}{2n} + O(\frac{1}{n^2}) \right).

As nn \to \infty: 3+4/n341/n43+040=34\frac{3+4/n^3}{4-1/n^4} \to \frac{3+0}{4-0} = \frac{3}{4}. ln(2πn)2n0\frac{\ln(2\pi n)}{2n} \to 0 (since lnx\ln x grows slower than xx). O(1n2)0O(\frac{1}{n^2}) \to 0.

So, limnlnL=34(1+0+0)=34\lim_{n \to \infty} \ln L = \frac{3}{4} \cdot (-1 + 0 + 0) = -\frac{3}{4}. Therefore, lnL=34\ln L = -\frac{3}{4}. L=e3/4L = e^{-3/4}. This can also be written as L=(e1)3/4=(1e)3/4L = (e^{-1})^{3/4} = (\frac{1}{e})^{3/4}.

Our result matches option (a).