Solveeit Logo

Question

Question: The value of $\cos^{-1}\left[\cos \left(\frac{\pi}{2}\right)\right]+\cos^{-1}\left[\sin \left(\frac{...

The value of cos1[cos(π2)]+cos1[sin(2π3)]\cos^{-1}\left[\cos \left(\frac{\pi}{2}\right)\right]+\cos^{-1}\left[\sin \left(\frac{2\pi}{3}\right)\right] is

A

2π3\frac{2\pi}{3}

B

π3\frac{\pi}{3}

C

π2\frac{\pi}{2}

D

π\pi

Answer

2π3\frac{2\pi}{3}

Explanation

Solution

  1. Evaluate cos1(cos(π/2))\cos^{-1}(\cos(\pi/2)).

    Since π/2\pi/2 lies in the principal range [0,π][0, \pi] for cos1\cos^{-1}, we have:

    cos1(cos(π/2))=π/2.\cos^{-1}(\cos(\pi/2)) = \pi/2.
  2. Evaluate cos1(sin(2π/3))\cos^{-1}(\sin(2\pi/3)).

    Note that:

    sin(2π/3)=sin(ππ/3)=sin(π/3)=3/2.\sin(2\pi/3) = \sin\left(\pi - \pi/3\right) = \sin(\pi/3) = \sqrt{3}/2.

    Since cos(π/6)=3/2\cos(\pi/6) = \sqrt{3}/2 and π/6\pi/6 is in [0,π][0, \pi], we get:

    cos1(3/2)=π/6.\cos^{-1}(\sqrt{3}/2) = \pi/6.
  3. Sum the results:

    π/2+π/6=3π6+π6=4π6=2π3.\pi/2 + \pi/6 = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3}.