Solveeit Logo

Question

Question: The determinant $\Delta = \begin{vmatrix} a^3+ax & ab & ac \\ a & a^2b & b^2+x & bc \\ a^2c & bc & c...

The determinant Δ=a3+axabacaa2bb2+xbca2cbcc2+x\Delta = \begin{vmatrix} a^3+ax & ab & ac \\ a & a^2b & b^2+x & bc \\ a^2c & bc & c^2+x \end{vmatrix}

is divisible by

A

x

B

C

a² + b²+c²-x

D

a² + b²+c²+x

Answer

Explanation

Solution

The given determinant is likely a typo. Based on the similar question, the intended determinant is assumed to be: Δ=a2+xabacabb2+xbcacbcc2+x\Delta = \begin{vmatrix} a^2+x & ab & ac \\ ab & b^2+x & bc \\ ac & bc & c^2+x \end{vmatrix} This determinant can be expressed as: Δ=x2(a2+b2+c2+x)\Delta = x^2(a^2+b^2+c^2+x) From this expression, it is clear that Δ\Delta is divisible by x2x^2.