Solveeit Logo

Question

Question: If a, b, c are side of triangle ABC and $a^3$, $b^3$, $c^3$ are roots of $x^3 - px^2 + qx - r = 0$ w...

If a, b, c are side of triangle ABC and a3a^3, b3b^3, c3c^3 are roots of x3px2+qxr=0x^3 - px^2 + qx - r = 0 where p,q,rNp, q, r \in N and sin3A+sin3B+sin3C3sinAsinBsinC=8Δ3\sin^3 A + \sin^3 B + \sin^3 C - 3 \sin A \sin B \sin C = 8\Delta^3. (Where Δ\Delta is area of triangle ABC) then find minimum value of (p + r)_____

Answer

5

Explanation

Solution

The problem asks for the minimum value of (p+r)(p+r) given certain conditions about a triangle ABC and a cubic equation.

1. Analyze the given condition involving sinA,sinB,sinC\sin A, \sin B, \sin C and Δ\Delta: The given condition is sin3A+sin3B+sin3C3sinAsinBsinC=8Δ3\sin^3 A + \sin^3 B + \sin^3 C - 3 \sin A \sin B \sin C = 8\Delta^3. We use the Sine Rule: sinA=a2R\sin A = \frac{a}{2R}, sinB=b2R\sin B = \frac{b}{2R}, sinC=c2R\sin C = \frac{c}{2R}, where R is the circumradius. Substitute these into the equation: a3(2R)3+b3(2R)3+c3(2R)33a2Rb2Rc2R=8Δ3\frac{a^3}{(2R)^3} + \frac{b^3}{(2R)^3} + \frac{c^3}{(2R)^3} - 3 \frac{a}{2R} \frac{b}{2R} \frac{c}{2R} = 8\Delta^3 18R3(a3+b3+c33abc)=8Δ3\frac{1}{8R^3} (a^3 + b^3 + c^3 - 3abc) = 8\Delta^3 a3+b3+c33abc=64R3Δ3a^3 + b^3 + c^3 - 3abc = 64R^3\Delta^3 We know the formula for the area of a triangle: Δ=abc4R\Delta = \frac{abc}{4R}. From this, we can write abc=4RΔabc = 4R\Delta. Substitute abc=4RΔabc = 4R\Delta into the right side of the equation: 64R3Δ3=64(RΔ)3=64(abc4)3=64a3b3c364=a3b3c364R^3\Delta^3 = 64 (R\Delta)^3 = 64 \left(\frac{abc}{4}\right)^3 = 64 \frac{a^3b^3c^3}{64} = a^3b^3c^3 So, the given condition simplifies to: a3+b3+c33abc=a3b3c3() a^3 + b^3 + c^3 - 3abc = a^3b^3c^3 \quad (*)

2. Relate the cubic equation roots to p,q,rp, q, r: The roots of the cubic equation x3px2+qxr=0x^3 - px^2 + qx - r = 0 are a3,b3,c3a^3, b^3, c^3. Using Vieta's formulas: Sum of roots: a3+b3+c3=pa^3+b^3+c^3 = p Product of roots: a3b3c3=ra^3b^3c^3 = r

3. Substitute pp and rr into equation ()(*): From equation ()(*), we have: p3abc=rp - 3abc = r We also know abc=r3abc = \sqrt[3]{r}. So, p3r3=rp - 3\sqrt[3]{r} = r. This implies p=r+3r3p = r + 3\sqrt[3]{r}.

4. Express (p+r)(p+r) in terms of rr: We need to find the minimum value of (p+r)(p+r). Substitute the expression for pp: p+r=(r+3r3)+r=2r+3r3p+r = (r + 3\sqrt[3]{r}) + r = 2r + 3\sqrt[3]{r}.

5. Determine the constraints on rr: The problem states that p,q,rNp, q, r \in N (natural numbers), which means p,q,r1p, q, r \ge 1. Since r=a3b3c3r = a^3b^3c^3, and a,b,ca, b, c are sides of a triangle (positive real numbers), rr must be a positive real number. Since rr must be a natural number, the smallest possible value for rr is 1.

6. Find the minimum value of (p+r)(p+r): Let f(r)=2r+3r3f(r) = 2r + 3\sqrt[3]{r}. To find the minimum value of f(r)f(r) for rNr \in N, we check the smallest natural number value for rr. If r=1r=1: p+r=2(1)+313=2+3=5p+r = 2(1) + 3\sqrt[3]{1} = 2 + 3 = 5.

7. Check if r=1r=1 is achievable and valid: If r=1r=1, then a3b3c3=1a^3b^3c^3 = 1, which implies abc=1abc=1. From p=r+3r3p = r + 3\sqrt[3]{r}, if r=1r=1, then p=1+313=1+3=4p = 1 + 3\sqrt[3]{1} = 1+3=4. Both p=4p=4 and r=1r=1 are natural numbers. Now we need to check if a triangle exists such that abc=1abc=1 and the condition a3+b3+c33abc=a3b3c3a^3+b^3+c^3-3abc = a^3b^3c^3 holds. If abc=1abc=1, the condition becomes a3+b3+c33(1)=1a^3+b^3+c^3-3(1) = 1. So a3+b3+c3=4a^3+b^3+c^3 = 4. This is consistent with p=4p=4. We also need q=a3b3+b3c3+c3a3q = a^3b^3+b^3c^3+c^3a^3 to be a natural number. If abc=1abc=1, then q=1c3+1a3+1b3q = \frac{1}{c^3} + \frac{1}{a^3} + \frac{1}{b^3}. Consider the case where a=1,b=1,c=1a=1, b=1, c=1. This forms an equilateral triangle with side length 1. For this triangle: abc=111=1abc = 1 \cdot 1 \cdot 1 = 1. This satisfies abc=1abc=1. a3=1,b3=1,c3=1a^3=1, b^3=1, c^3=1. p=a3+b3+c3=1+1+1=3p = a^3+b^3+c^3 = 1+1+1=3. q=a3b3+b3c3+c3a3=11+11+11=3q = a^3b^3+b^3c^3+c^3a^3 = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3. r=a3b3c3=111=1r = a^3b^3c^3 = 1 \cdot 1 \cdot 1 = 1. All p=3,q=3,r=1p=3, q=3, r=1 are natural numbers. However, for a=b=c=1a=b=c=1, the condition a3+b3+c33abc=a3b3c3a^3+b^3+c^3-3abc = a^3b^3c^3 becomes 1+1+13(1)(1)(1)=(1)(1)(1)1+1+1-3(1)(1)(1) = (1)(1)(1), which simplifies to 0=10=1. This is false. Therefore, a=b=c=1a=b=c=1 is not a valid triangle for this problem.

This means that p=4,r=1p=4, r=1 (derived from abc=1abc=1) is not achievable through a=b=c=1a=b=c=1. The function f(r)=2r+3r1/3f(r) = 2r + 3r^{1/3} is an increasing function for r>0r > 0. Its derivative f(r)=2+r2/3>0f'(r) = 2 + r^{-2/3} > 0 for all r>0r>0. Since rr must be a natural number, the minimum value of f(r)f(r) will occur at the smallest possible natural number value for rr, which is r=1r=1. The fact that a=b=c=1a=b=c=1 does not satisfy the original condition does not mean that r=1r=1 is unachievable. It just means that a=b=c=1a=b=c=1 is not the triangle. We need to find if there exists any triangle (a,b,c)(a,b,c) such that a3b3c3=1a^3b^3c^3=1 and a3+b3+c33abc=a3b3c3a^3+b^3+c^3-3abc = a^3b^3c^3. As shown, these conditions imply a3+b3+c3=4a^3+b^3+c^3=4 and abc=1abc=1. We also need q=a3b3+b3c3+c3a3q = a^3b^3+b^3c^3+c^3a^3 to be a natural number. Let a3=x,b3=y,c3=za^3=x, b^3=y, c^3=z. We need x+y+z=4x+y+z=4, xyz=1xyz=1, and xy+yz+zxxy+yz+zx to be a natural number. Consider x=1/2,y=1/2,z=2x=1/2, y=1/2, z=2. Then x+y+z=1/2+1/2+2=34x+y+z=1/2+1/2+2=3 \ne 4. Consider x=1,y=1,z=2x=1, y=1, z=2. Then x+y+z=4x+y+z=4, xyz=21xyz=2 \ne 1. Consider x=1/2,y=1,z=2x=1/2, y=1, z=2. xyz=1xyz=1. x+y+z=1/2+1+2=3.54x+y+z=1/2+1+2=3.5 \ne 4. Consider x=1/3,y=1,z=3x=1/3, y=1, z=3. xyz=1xyz=1. x+y+z=1/3+1+3=13/34x+y+z=1/3+1+3=13/3 \ne 4. Consider x=1/4,y=1,z=4x=1/4, y=1, z=4. xyz=1xyz=1. x+y+z=1/4+1+4=21/44x+y+z=1/4+1+4=21/4 \ne 4. Consider x=1/k,y=k,z=1x=1/k, y=k, z=1. xyz=1xyz=1. x+y+z=1/k+k+1=4x+y+z=1/k+k+1=4. k2+k+1=4k    k23k+1=0k^2+k+1 = 4k \implies k^2-3k+1=0. k=3±942=3±52k = \frac{3 \pm \sqrt{9-4}}{2} = \frac{3 \pm \sqrt{5}}{2}. Let k=3+52k = \frac{3+\sqrt{5}}{2}. Then x=23+5=2(35)95=352x = \frac{2}{3+\sqrt{5}} = \frac{2(3-\sqrt{5})}{9-5} = \frac{3-\sqrt{5}}{2}. So, a3=352a^3 = \frac{3-\sqrt{5}}{2}, b3=3+52b^3 = \frac{3+\sqrt{5}}{2}, c3=1c^3 = 1. Are a,b,ca,b,c sides of a triangle? a=(352)1/3a = \left(\frac{3-\sqrt{5}}{2}\right)^{1/3}, b=(3+52)1/3b = \left(\frac{3+\sqrt{5}}{2}\right)^{1/3}, c=1c = 1. We need to check triangle inequality: a+b>ca+b>c, b+c>ab+c>a, c+a>bc+a>b. Let's check q=a3b3+b3c3+c3a3=xy+yz+zxq = a^3b^3+b^3c^3+c^3a^3 = xy+yz+zx. q=3523+52+3+521+1352q = \frac{3-\sqrt{5}}{2} \cdot \frac{3+\sqrt{5}}{2} + \frac{3+\sqrt{5}}{2} \cdot 1 + 1 \cdot \frac{3-\sqrt{5}}{2} q=954+3+52+352q = \frac{9-5}{4} + \frac{3+\sqrt{5}}{2} + \frac{3-\sqrt{5}}{2} q=44+3+5+352=1+62=1+3=4q = \frac{4}{4} + \frac{3+\sqrt{5}+3-\sqrt{5}}{2} = 1 + \frac{6}{2} = 1+3=4. So, q=4q=4, which is a natural number. So, we have p=4,q=4,r=1p=4, q=4, r=1. All are natural numbers. The cubic equation is x34x2+4x1=0x^3-4x^2+4x-1=0. The roots are a3,b3,c3a^3, b^3, c^3. We have a3=352a^3 = \frac{3-\sqrt{5}}{2}, b3=3+52b^3 = \frac{3+\sqrt{5}}{2}, c3=1c^3 = 1. We need to verify if a,b,ca, b, c form a triangle. a=(352)1/3(0.38)1/30.72a = \left(\frac{3-\sqrt{5}}{2}\right)^{1/3} \approx (0.38)^{1/3} \approx 0.72 b=(3+52)1/3(2.618)1/31.37b = \left(\frac{3+\sqrt{5}}{2}\right)^{1/3} \approx (2.618)^{1/3} \approx 1.37 c=1c = 1. Check triangle inequality: a+b0.72+1.37=2.09>1a+b \approx 0.72+1.37 = 2.09 > 1 (c) - True a+c0.72+1=1.72>1.37a+c \approx 0.72+1 = 1.72 > 1.37 (b) - True b+c1.37+1=2.37>0.72b+c \approx 1.37+1 = 2.37 > 0.72 (a) - True Since all triangle inequalities hold, such a triangle exists. Thus, r=1r=1 is an achievable value, and it gives the minimum value for p+rp+r.

Minimum value of (p+r)=5(p+r) = 5.