Solveeit Logo

Question

Question: Characteristic X-rays of frequency 4.2 x10$^{18}$ Hz are produced when transitions from $L$ shell ta...

Characteristic X-rays of frequency 4.2 x1018^{18} Hz are produced when transitions from LL shell take place in a certain target material. Use Moseley's law and determine the atomic number of the target material. Given, Rydberg constant is R = 1.1 x 107^{7}/m

Answer

42

Explanation

Solution

To determine the atomic number of the target material, we use Moseley's Law for characteristic X-rays.

Moseley's Law states that the frequency (ν\nu) of a characteristic X-ray line is related to the atomic number (ZZ) by the formula:

ν=Rc(Zb)2(1n121n22)\nu = R c (Z-b)^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)

where:

  • RR is the Rydberg constant.
  • cc is the speed of light.
  • ZZ is the atomic number.
  • bb is the screening constant.
  • n1n_1 and n2n_2 are the principal quantum numbers of the inner and outer shells involved in the electron transition, respectively.

The problem states that "transitions from L shell take place". This typically refers to an electron from the L-shell (n=2) filling a vacancy in the K-shell (n=1). This transition produces a K-alpha (KαK_{\alpha}) X-ray. For K-alpha lines, the screening constant bb is approximately 1.

So, for a K-alpha transition:

n1=1n_1 = 1 (K-shell)

n2=2n_2 = 2 (L-shell)

b=1b = 1

Substituting these values into Moseley's Law:

ν=Rc(Z1)2(112122)\nu = R c (Z-1)^2 \left( \frac{1}{1^2} - \frac{1}{2^2} \right)

ν=Rc(Z1)2(114)\nu = R c (Z-1)^2 \left( 1 - \frac{1}{4} \right)

ν=Rc(Z1)2(34)\nu = R c (Z-1)^2 \left( \frac{3}{4} \right)

Given values:

Frequency ν=4.2×1018\nu = 4.2 \times 10^{18} Hz

Rydberg constant R=1.1×107R = 1.1 \times 10^{7} /m

Speed of light c=3×108c = 3 \times 10^8 m/s

Now, we can plug in the values and solve for ZZ:

4.2×1018=(1.1×107 m1)×(3×108 m/s)×(Z1)2×344.2 \times 10^{18} = (1.1 \times 10^{7} \text{ m}^{-1}) \times (3 \times 10^8 \text{ m/s}) \times (Z-1)^2 \times \frac{3}{4}

First, calculate the product R×cR \times c:

Rc=(1.1×107)×(3×108)=3.3×1015R c = (1.1 \times 10^{7}) \times (3 \times 10^8) = 3.3 \times 10^{15} Hz

Substitute this back into the equation:

4.2×1018=(3.3×1015)×(Z1)2×344.2 \times 10^{18} = (3.3 \times 10^{15}) \times (Z-1)^2 \times \frac{3}{4}

Rearrange the equation to solve for (Z1)2(Z-1)^2:

(Z1)2=4.2×10183.3×1015×34(Z-1)^2 = \frac{4.2 \times 10^{18}}{3.3 \times 10^{15} \times \frac{3}{4}}

(Z1)2=4.2×1018(3.3×1015)×0.75(Z-1)^2 = \frac{4.2 \times 10^{18}}{ (3.3 \times 10^{15}) \times 0.75 }

(Z1)2=4.2×10182.475×1015(Z-1)^2 = \frac{4.2 \times 10^{18}}{2.475 \times 10^{15}}

(Z1)2=4.22.475×10(1815)(Z-1)^2 = \frac{4.2}{2.475} \times 10^{(18-15)}

(Z1)2=1.696969...×103(Z-1)^2 = 1.696969... \times 10^3

(Z1)2=1696.969...(Z-1)^2 = 1696.969...

Now, take the square root of both sides:

Z1=1696.969...Z-1 = \sqrt{1696.969...}

Z141.194Z-1 \approx 41.194

Finally, solve for ZZ:

Z41.194+1Z \approx 41.194 + 1

Z42.194Z \approx 42.194

Since the atomic number must be an integer, we round to the nearest whole number.

Z=42Z = 42

The target material is Molybdenum (Mo), which has an atomic number of 42.