Solveeit Logo

Question

Question: The value of $\tan^{-1}\left\{ \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}+\frac{1}{...

The value of tan1{1+x1x1+x+1x}+12cos1x\tan^{-1}\left\{ \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}+\frac{1}{2}\cos^{-1}x is

[2024]

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

0

D

π3\frac{\pi}{3}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let x=cosθx = \cos\theta, where θ[0,π]\theta \in [0, \pi]. Then,

1+x=1+cosθ=2cosθ2,1x=1cosθ=2sinθ2.\sqrt{1+x} = \sqrt{1+\cos\theta} = \sqrt{2}\cos\frac{\theta}{2},\quad \sqrt{1-x} = \sqrt{1-\cos\theta} = \sqrt{2}\sin\frac{\theta}{2}.

Thus, the fraction becomes:

1+x1x1+x+1x=cosθ2sinθ2cosθ2+sinθ2.\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} = \frac{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}+\sin\frac{\theta}{2}}.

Notice that:

tan(π4θ2)=1tanθ21+tanθ2=cosθ2sinθ2cosθ2+sinθ2.\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 - \tan\frac{\theta}{2}}{1 + \tan\frac{\theta}{2}} = \frac{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}+\sin\frac{\theta}{2}}.

Thus,

tan1(1+x1x1+x+1x)=π4θ2.\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{\theta}{2}.

Also, since x=cosθx = \cos\theta, we have:

cos1x=θ.\cos^{-1}x = \theta.

Therefore, the given expression simplifies to:

(π4θ2)+12θ=π4.\left(\frac{\pi}{4} - \frac{\theta}{2}\right) + \frac{1}{2}\theta = \frac{\pi}{4}.