Question
Question: In $\triangle ABC$, if $sin^2 A + sin^2 B = sin^2 C$ and $l(AB) = 10$, then the maximum value of the...
In △ABC, if sin2A+sin2B=sin2C and l(AB)=10, then the maximum value of the of triangle ABC is
50
102
25
252
25
Solution
We are given that in a triangle ABC (with sides opposite angles A, B, C respectively) the following condition holds:
sin2A+sin2B=sin2Cand that side AB=10. In a triangle with vertices A, B, C, the side AB is opposite angle C (i.e. c=10).
Step 1. Use the condition:
In any triangle, A+B+C=π so that C=π−(A+B). Thus,
sinC=sin[π−(A+B)]=sin(A+B).The given condition becomes:
sin2A+sin2B=sin2(A+B).Step 2. Expand sin2(A+B):
Using the sine addition formula, we have:
sin(A+B)=sinAcosB+cosAsinB.Thus,
sin2(A+B)=(sinAcosB+cosAsinB)2=sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB.So the equality becomes:
sin2A+sin2B=sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB.Step 3. Rearrange the equation:
Subtract the right-hand side terms from the left:
sin2A+sin2B−sin2Acos2B−cos2Asin2B=2sinAsinBcosAcosB.Notice that:
sin2A(1−cos2B)=sin2Asin2Bandsin2B(1−cos2A)=sin2Asin2B.Thus, the left-hand side becomes:
sin2Asin2B+sin2Asin2B=2sin2Asin2B.So,
2sin2Asin2B=2sinAsinBcosAcosB.Dividing both sides by 2sinAsinB (assuming none of the angles is 0, which is valid in a non-degenerate triangle) gives:
sinAsinB=cosAcosB.Dividing by cosAcosB (again nonzero):
tanAtanB=1.Step 4. Interpret the condition tanAtanB=1:
It is known that:
cos(A+B)=cosAcosB−sinAsinB.Thus, since sinAsinB=cosAcosB,
cos(A+B)=cosAcosB−cosAcosB=0.So,
A+B=2π(or 90∘).Then,
C=π−(A+B)=2π=90∘.This shows that the triangle is right-angled at C.
Step 5. Maximizing the area of a right-angled triangle with fixed hypotenuse:
In a right triangle with hypotenuse c=10, if we denote the legs as a and b, the area is
Area=21abwitha2+b2=102=100.The product ab is maximized when a=b. Then:
2a2=100⇒a2=50⇒a=52.Hence, the maximum area is:
Area=21(52)(52)=21×50=25.The maximum value (area) of triangle ABC is 25. Thus, the correct option is (c) 25.