Solveeit Logo

Question

Question: In $\triangle ABC$, if $sin^2 A + sin^2 B = sin^2 C$ and $l(AB) = 10$, then the maximum value of the...

In ABC\triangle ABC, if sin2A+sin2B=sin2Csin^2 A + sin^2 B = sin^2 C and l(AB)=10l(AB) = 10, then the maximum value of the of triangle ABC is

A

50

B

10210\sqrt{2}

C

25

D

25225\sqrt{2}

Answer

25

Explanation

Solution

We are given that in a triangle ABC (with sides opposite angles A, B, C respectively) the following condition holds:

sin2A+sin2B=sin2C\sin^2 A + \sin^2 B = \sin^2 C

and that side AB=10AB = 10. In a triangle with vertices A, B, C, the side ABAB is opposite angle C (i.e. c=10c=10).

Step 1. Use the condition:

In any triangle, A+B+C=πA+B+C=\pi so that C=π(A+B)C=\pi-(A+B). Thus,

sinC=sin[π(A+B)]=sin(A+B).\sin C = \sin\big[\pi-(A+B)\big] = \sin(A+B).

The given condition becomes:

sin2A+sin2B=sin2(A+B).\sin^2 A + \sin^2 B = \sin^2 (A+B).

Step 2. Expand sin2(A+B)\sin^2(A+B):

Using the sine addition formula, we have:

sin(A+B)=sinAcosB+cosAsinB.\sin(A+B) = \sin A\cos B + \cos A\sin B.

Thus,

sin2(A+B)=(sinAcosB+cosAsinB)2=sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB.\sin^2 (A+B) = (\sin A\cos B+\cos A\sin B)^2 = \sin^2 A \cos^2 B + \cos^2 A \sin^2 B + 2\sin A\sin B\cos A\cos B.

So the equality becomes:

sin2A+sin2B=sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB.\sin^2 A + \sin^2 B = \sin^2 A \cos^2 B + \cos^2 A \sin^2 B + 2\sin A\sin B\cos A\cos B.

Step 3. Rearrange the equation:

Subtract the right-hand side terms from the left:

sin2A+sin2Bsin2Acos2Bcos2Asin2B=2sinAsinBcosAcosB.\sin^2 A + \sin^2 B - \sin^2 A\cos^2 B - \cos^2 A\sin^2 B = 2\sin A\sin B\cos A\cos B.

Notice that:

sin2A(1cos2B)=sin2Asin2Bandsin2B(1cos2A)=sin2Asin2B.\sin^2 A (1-\cos^2 B) = \sin^2 A \sin^2 B \quad \text{and} \quad \sin^2 B (1-\cos^2 A) = \sin^2 A \sin^2 B.

Thus, the left-hand side becomes:

sin2Asin2B+sin2Asin2B=2sin2Asin2B.\sin^2 A\sin^2 B + \sin^2 A\sin^2 B = 2\sin^2 A \sin^2 B.

So,

2sin2Asin2B=2sinAsinBcosAcosB.2\sin^2 A\sin^2 B = 2\sin A\sin B\cos A\cos B.

Dividing both sides by 2sinAsinB2\sin A\sin B (assuming none of the angles is 0, which is valid in a non-degenerate triangle) gives:

sinAsinB=cosAcosB.\sin A\sin B = \cos A\cos B.

Dividing by cosAcosB\cos A\cos B (again nonzero):

tanAtanB=1.\tan A \tan B = 1.

Step 4. Interpret the condition tanAtanB=1\tan A\tan B=1:

It is known that:

cos(A+B)=cosAcosBsinAsinB.\cos(A+B) = \cos A\cos B - \sin A\sin B.

Thus, since sinAsinB=cosAcosB\sin A\sin B = \cos A\cos B,

cos(A+B)=cosAcosBcosAcosB=0.\cos(A+B) = \cos A\cos B - \cos A\cos B = 0.

So,

A+B=π2(or 90).A+B = \frac{\pi}{2} \quad (\text{or } 90^\circ).

Then,

C=π(A+B)=π2=90.C = \pi - (A+B) = \frac{\pi}{2} = 90^\circ.

This shows that the triangle is right-angled at CC.

Step 5. Maximizing the area of a right-angled triangle with fixed hypotenuse:

In a right triangle with hypotenuse c=10c=10, if we denote the legs as aa and bb, the area is

Area=12abwitha2+b2=102=100.\text{Area} = \frac{1}{2}ab \quad \text{with} \quad a^2+b^2=10^2=100.

The product abab is maximized when a=ba=b. Then:

2a2=100a2=50a=52.2a^2=100 \quad \Rightarrow \quad a^2=50 \quad \Rightarrow \quad a = 5\sqrt{2}.

Hence, the maximum area is:

Area=12(52)(52)=12×50=25.\text{Area} = \frac{1}{2}(5\sqrt{2})(5\sqrt{2}) = \frac{1}{2}\times 50 = 25.

The maximum value (area) of triangle ABC is 25. Thus, the correct option is (c) 25.