Solveeit Logo

Question

Question: A screen is at a distance D = 80 cm from a diaphragm having two narrow slits $S_1$ and $S_2$ which a...

A screen is at a distance D = 80 cm from a diaphragm having two narrow slits S1S_1 and S2S_2 which are d = 2 mm apart. Slit S1S_1 is covered by a transparent sheet of thickness t1t_1 = 2.5 μ\mum and S2S_2 by another sheet of thickness t2t_2 = 1.25 μ\mum as shown in figure. Both sheets are made of same material having refractive index μ\mu = 1.40. Water is filled in space between diaphragm and screen. A monochromatic light beam of wavelength λ\lambda = 5000 A˚\mathring{A} is incident normally on the diaphragm. Assuming intensity of beam to be uniform and slits of equal width, calculate ratio of intensity at C to maximum intensity of interference pattern obtained on the screen, where C is foot of perpendicular bisector of S1S2S_1 S_2. (Refractive index of water, μw\mu_w = 4/3)

Answer

cos2(40)\cos^2(40^\circ)

Explanation

Solution

The given parameters are:

  • Distance between screen and diaphragm, D=80 cm=0.8 mD = 80 \text{ cm} = 0.8 \text{ m}.

  • Distance between the two slits, d=2 mm=2×103 md = 2 \text{ mm} = 2 \times 10^{-3} \text{ m}.

  • Thickness of the transparent sheet covering slit S1S_1, t1=2.5 μm=2.5×106 mt_1 = 2.5 \text{ } \mu\text{m} = 2.5 \times 10^{-6} \text{ m}.

  • Thickness of the transparent sheet covering slit S2S_2, t2=1.25 μm=1.25×106 mt_2 = 1.25 \text{ } \mu\text{m} = 1.25 \times 10^{-6} \text{ m}.

  • Refractive index of the material of the sheets, μ=1.40\mu = 1.40.

  • Refractive index of water, μw=4/3\mu_w = 4/3.

  • Wavelength of the incident light in vacuum, λ=5000 A˚=5000×1010 m=5×107 m\lambda = 5000 \text{ } \mathring{A} = 5000 \times 10^{-10} \text{ m} = 5 \times 10^{-7} \text{ m}.

The wavelength of light in water is λw=λμw=5×107 m4/3=154×107 m=3.75×107 m\lambda_w = \frac{\lambda}{\mu_w} = \frac{5 \times 10^{-7} \text{ m}}{4/3} = \frac{15}{4} \times 10^{-7} \text{ m} = 3.75 \times 10^{-7} \text{ m}.

When a transparent sheet of thickness tt and refractive index μ\mu is placed in a medium of refractive index μw\mu_w, the additional optical path introduced compared to the path in the medium is (μμw)t(\mu - \mu_w)t.

For slit S1S_1, the additional optical path is ΔL1=(μμw)t1\Delta L_1 = (\mu - \mu_w)t_1.

For slit S2S_2, the additional optical path is ΔL2=(μμw)t2\Delta L_2 = (\mu - \mu_w)t_2.

At point C, which is the foot of the perpendicular bisector of S1S2S_1S_2, the geometrical path difference is zero. The optical path difference at C is due to the presence of the transparent sheets:

ΔL=ΔL1ΔL2=(μμw)t1(μμw)t2=(μμw)(t1t2)\Delta L = \Delta L_1 - \Delta L_2 = (\mu - \mu_w)t_1 - (\mu - \mu_w)t_2 = (\mu - \mu_w)(t_1 - t_2).

Calculate μμw\mu - \mu_w: μμw=1.404/3=141043=7543=212015=115\mu - \mu_w = 1.40 - 4/3 = \frac{14}{10} - \frac{4}{3} = \frac{7}{5} - \frac{4}{3} = \frac{21 - 20}{15} = \frac{1}{15}.

Calculate t1t2t_1 - t_2: t1t2=2.5×106 m1.25×106 m=1.25×106 m=54×106 mt_1 - t_2 = 2.5 \times 10^{-6} \text{ m} - 1.25 \times 10^{-6} \text{ m} = 1.25 \times 10^{-6} \text{ m} = \frac{5}{4} \times 10^{-6} \text{ m}.

Calculate the optical path difference ΔL\Delta L: ΔL=115×54×106 m=13×4×106 m=112×106 m\Delta L = \frac{1}{15} \times \frac{5}{4} \times 10^{-6} \text{ m} = \frac{1}{3 \times 4} \times 10^{-6} \text{ m} = \frac{1}{12} \times 10^{-6} \text{ m}.

The phase difference ϕ\phi at point C is given by ϕ=2πλwΔL\phi = \frac{2\pi}{\lambda_w} \Delta L. ϕ=2π(15/4)×107 m×112×106 m=8π15×107×112×106=8π15×12×10=80π180=4π9\phi = \frac{2\pi}{(15/4) \times 10^{-7} \text{ m}} \times \frac{1}{12} \times 10^{-6} \text{ m} = \frac{8\pi}{15 \times 10^{-7}} \times \frac{1}{12} \times 10^{-6} = \frac{8\pi}{15 \times 12} \times 10 = \frac{80\pi}{180} = \frac{4\pi}{9}.

Assuming the intensity of light from each slit is I0I_0 (since the intensity of the beam is uniform and slits are of equal width), the intensity at point C is given by IC=4I0cos2(ϕ/2)I_C = 4I_0 \cos^2 (\phi/2).

The maximum intensity in the interference pattern is Imax=4I0I_{max} = 4I_0.

The ratio of intensity at C to the maximum intensity is ICImax=4I0cos2(ϕ/2)4I0=cos2(ϕ/2)\frac{I_C}{I_{max}} = \frac{4I_0 \cos^2 (\phi/2)}{4I_0} = \cos^2 (\phi/2).

Substitute the value of ϕ\phi: ϕ/2=12×4π9=2π9\phi/2 = \frac{1}{2} \times \frac{4\pi}{9} = \frac{2\pi}{9}.

The ratio is cos2(2π9)\cos^2 \left(\frac{2\pi}{9}\right).

To express this numerically, 2π9\frac{2\pi}{9} radians is equal to 2×1809=40\frac{2 \times 180^\circ}{9} = 40^\circ.

The ratio is cos2(40)\cos^2 (40^\circ).