Solveeit Logo

Question

Question: 1 mole of ideal monoatomic gas is heated by supplying 5 kJ heat from a reservoir maintained at 400 K...

1 mole of ideal monoatomic gas is heated by supplying 5 kJ heat from a reservoir maintained at 400 K from 300 K to 400 K. In the process volume of gas increased from 1 L to 10 L. Find ΔStotal\Delta S_{total} (in J/K-mol) in the process

Use : ln(43)=0.3\ln\left(\frac{4}{3}\right)=0.3, ln10=2.3\ln 10=2.3, R=8.3 J/K-mol and lnx=2.3logx\ln x=2.3 \log x

Answer

10.325

Explanation

Solution

To find the total entropy change (ΔStotal\Delta S_{total}), we need to calculate the entropy change of the system (ΔSsystem\Delta S_{system}) and the entropy change of the surroundings (ΔSsurroundings\Delta S_{surroundings}).

1. Calculate ΔSsystem\Delta S_{system}: For an ideal gas, the entropy change is given by the formula: ΔSsystem=nCVln(T2T1)+nRln(V2V1)\Delta S_{system} = n C_V \ln\left(\frac{T_2}{T_1}\right) + n R \ln\left(\frac{V_2}{V_1}\right) Given:

  • Number of moles, n=1n = 1 mol
  • Initial temperature, T1=300T_1 = 300 K
  • Final temperature, T2=400T_2 = 400 K
  • Initial volume, V1=1V_1 = 1 L
  • Final volume, V2=10V_2 = 10 L
  • Gas constant, R=8.3R = 8.3 J/K-mol
  • For a monoatomic ideal gas, CV=32RC_V = \frac{3}{2}R.

Substitute the values into the formula: ΔSsystem=(1 mol)×(32R)×ln(400 K300 K)+(1 mol)×R×ln(10 L1 L)\Delta S_{system} = (1 \text{ mol}) \times \left(\frac{3}{2}R\right) \times \ln\left(\frac{400 \text{ K}}{300 \text{ K}}\right) + (1 \text{ mol}) \times R \times \ln\left(\frac{10 \text{ L}}{1 \text{ L}}\right) ΔSsystem=32Rln(43)+Rln(10)\Delta S_{system} = \frac{3}{2}R \ln\left(\frac{4}{3}\right) + R \ln(10) Using the given values: ln(43)=0.3\ln\left(\frac{4}{3}\right)=0.3 and ln10=2.3\ln 10=2.3: ΔSsystem=1.5×(8.3 J/K-mol)×(0.3)+(8.3 J/K-mol)×(2.3)\Delta S_{system} = 1.5 \times (8.3 \text{ J/K-mol}) \times (0.3) + (8.3 \text{ J/K-mol}) \times (2.3) ΔSsystem=(12.45×0.3) J/K-mol+(19.09) J/K-mol\Delta S_{system} = (12.45 \times 0.3) \text{ J/K-mol} + (19.09) \text{ J/K-mol} ΔSsystem=3.735 J/K-mol+19.09 J/K-mol\Delta S_{system} = 3.735 \text{ J/K-mol} + 19.09 \text{ J/K-mol} ΔSsystem=22.825 J/K-mol\Delta S_{system} = 22.825 \text{ J/K-mol}

2. Calculate ΔSsurroundings\Delta S_{surroundings}: The heat is supplied from a reservoir maintained at a constant temperature. For heat transfer from a reservoir, the entropy change of the surroundings is given by: ΔSsurroundings=qsurroundingsTreservoir\Delta S_{surroundings} = \frac{q_{surroundings}}{T_{reservoir}} The heat supplied to the system (qsystemq_{system}) is 5 kJ = 5000 J. Therefore, the heat lost by the surroundings (qsurroundingsq_{surroundings}) is -5000 J. The temperature of the reservoir (TreservoirT_{reservoir}) is 400 K. ΔSsurroundings=5000 J400 K\Delta S_{surroundings} = \frac{-5000 \text{ J}}{400 \text{ K}} ΔSsurroundings=12.5 J/K\Delta S_{surroundings} = -12.5 \text{ J/K}

3. Calculate ΔStotal\Delta S_{total}: The total entropy change is the sum of the entropy change of the system and the entropy change of the surroundings: ΔStotal=ΔSsystem+ΔSsurroundings\Delta S_{total} = \Delta S_{system} + \Delta S_{surroundings} ΔStotal=22.825 J/K-mol+(12.5 J/K)\Delta S_{total} = 22.825 \text{ J/K-mol} + (-12.5 \text{ J/K}) ΔStotal=10.325 J/K-mol\Delta S_{total} = 10.325 \text{ J/K-mol}

The positive value of ΔStotal\Delta S_{total} indicates that the process is irreversible and spontaneous.