Solveeit Logo

Question

Question: \(45C_{8} + \sum_{k = 1}^{7}{\mspace{6mu}^{52 - k}C_{7}\mspace{6mu} + \mspace{6mu}}\sum_{i = 1}^{5}{...

45C8+k=176mu52kC76mu+6mui=156mu57iC50i45C_{8} + \sum_{k = 1}^{7}{\mspace{6mu}^{52 - k}C_{7}\mspace{6mu} + \mspace{6mu}}\sum_{i = 1}^{5}{\mspace{6mu}^{57 - i}C_{50 - i}} is equal to

A

57C757C_{7}

B

56C756C_{7}

C

57C857C_{8}

D

None of these

Answer

57C857C_{8}

Explanation

Solution

Now,

45C8+k=1752kC7+i=1557iC50i45C_{8} + \sum_{k = 1}^{7}{52 - kC_{7} + \sum_{i = 1}^{5}{57 - iC_{50 - i}}}

=45C8+(51C7+50C7+...+45C7)+(56C49+55C48+...+52C45)45C_{8} + (^{51}C_{7} +^{50}C_{7} + ... +^{45}C_{7}) + (^{56}C_{49} +^{55}C_{48} + ... +^{52}C_{45}) = (45C8+45C7+46C7+...+51C7)+(56C7+55C7+...+52C7)(^{45}C_{8} +^{45}C_{7} +^{46}C_{7} + ... +^{51}C_{7}) + (^{56}C_{7} +^{55}C_{7} + ... +^{52}C_{7})

\because ( nCr=nCnrnC_{r} =^{n}C_{n - r}).

=(45C8+45C7)+46C7+47C7+....+56C7(^{45}C_{8} +^{45}C_{7}) +^{46}C_{7} +^{47}C_{7} + .... +^{56}C_{7}= (46C8+46C7)+47C7+...+56C7(^{46}C_{8} +^{46}C_{7}) +^{47}C_{7} + ... +^{56}C_{7}

= 57C857C_{8}

(6munCr+nCr1=n1Cr\because\mspace{6mu}^{n}C_{r} +^{n}C_{r - 1} =^{n - 1}C_{r})