Solveeit Logo

Question

Question: Negation of a statement 'IF $\forall$ x, x is a complex number, then x² <0' is [2022]...

Negation of a statement 'IF \forall x, x is a complex number, then x² <0' is [2022]

A

\existsx, x is not a complex number and x² \geq0.

B

\forallx, x is a complex number and x² <0.

C

\existsx, x is not a complex number and x² <0.

D

\forallx, x is a complex number and x² \geq0.

Answer

\forallx, x is a complex number and x² \geq0.

Explanation

Solution

Let

p:x,  x is a complex numberandq:x2<0p:\forall x,\; x\text{ is a complex number} \quad\text{and}\quad q: x^2 < 0.

The given statement is of the form

pqp\to q.

The negation of an implication is given by:

¬(pq)p¬q\neg(p\to q) \equiv p \land \neg q.

So we have:

¬(pq)[x,  x is a complex number][¬(x2<0)]\neg(p\to q) \equiv \Bigl[\forall x,\; x\text{ is a complex number}\Bigr] \land \Bigl[ \neg\bigl(x^2<0\bigr)\Bigr].

Since

¬(x2<0)x20\neg(x^2 < 0) \equiv x^2 \ge 0,

the negation becomes:

x,  x is a complex number and x20\forall x,\; x \text{ is a complex number and } x^2\ge 0.